alicloud.eflo.ExperimentPlanTemplate
Explore with Pulumi AI
Provides a Eflo Experiment Plan Template resource.
For information about Eflo Experiment Plan Template and how to use it, see What is Experiment Plan Template.
NOTE: Available since v1.248.0.
Example Usage
Basic Usage
import * as pulumi from "@pulumi/pulumi";
import * as alicloud from "@pulumi/alicloud";
const config = new pulumi.Config();
const name = config.get("name") || "terraform-example";
const _default = new alicloud.eflo.ExperimentPlanTemplate("default", {
templatePipelines: [{
workloadId: 2,
workloadName: "MatMul",
envParams: {
cpuPerWorker: 90,
gpuPerWorker: 8,
memoryPerWorker: 500,
shareMemory: 500,
workerNum: 1,
pyTorchVersion: "1",
gpuDriverVersion: "1",
cudaVersion: "1",
ncclVersion: "1",
},
pipelineOrder: 1,
scene: "baseline",
}],
privacyLevel: "private",
templateName: name,
templateDescription: name,
});
import pulumi
import pulumi_alicloud as alicloud
config = pulumi.Config()
name = config.get("name")
if name is None:
name = "terraform-example"
default = alicloud.eflo.ExperimentPlanTemplate("default",
template_pipelines=[{
"workload_id": 2,
"workload_name": "MatMul",
"env_params": {
"cpu_per_worker": 90,
"gpu_per_worker": 8,
"memory_per_worker": 500,
"share_memory": 500,
"worker_num": 1,
"py_torch_version": "1",
"gpu_driver_version": "1",
"cuda_version": "1",
"nccl_version": "1",
},
"pipeline_order": 1,
"scene": "baseline",
}],
privacy_level="private",
template_name=name,
template_description=name)
package main
import (
"github.com/pulumi/pulumi-alicloud/sdk/v3/go/alicloud/eflo"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi/config"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
cfg := config.New(ctx, "")
name := "terraform-example"
if param := cfg.Get("name"); param != "" {
name = param
}
_, err := eflo.NewExperimentPlanTemplate(ctx, "default", &eflo.ExperimentPlanTemplateArgs{
TemplatePipelines: eflo.ExperimentPlanTemplateTemplatePipelineArray{
&eflo.ExperimentPlanTemplateTemplatePipelineArgs{
WorkloadId: pulumi.Int(2),
WorkloadName: pulumi.String("MatMul"),
EnvParams: &eflo.ExperimentPlanTemplateTemplatePipelineEnvParamsArgs{
CpuPerWorker: pulumi.Int(90),
GpuPerWorker: pulumi.Int(8),
MemoryPerWorker: pulumi.Int(500),
ShareMemory: pulumi.Int(500),
WorkerNum: pulumi.Int(1),
PyTorchVersion: pulumi.String("1"),
GpuDriverVersion: pulumi.String("1"),
CudaVersion: pulumi.String("1"),
NcclVersion: pulumi.String("1"),
},
PipelineOrder: pulumi.Int(1),
Scene: pulumi.String("baseline"),
},
},
PrivacyLevel: pulumi.String("private"),
TemplateName: pulumi.String(name),
TemplateDescription: pulumi.String(name),
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using AliCloud = Pulumi.AliCloud;
return await Deployment.RunAsync(() =>
{
var config = new Config();
var name = config.Get("name") ?? "terraform-example";
var @default = new AliCloud.Eflo.ExperimentPlanTemplate("default", new()
{
TemplatePipelines = new[]
{
new AliCloud.Eflo.Inputs.ExperimentPlanTemplateTemplatePipelineArgs
{
WorkloadId = 2,
WorkloadName = "MatMul",
EnvParams = new AliCloud.Eflo.Inputs.ExperimentPlanTemplateTemplatePipelineEnvParamsArgs
{
CpuPerWorker = 90,
GpuPerWorker = 8,
MemoryPerWorker = 500,
ShareMemory = 500,
WorkerNum = 1,
PyTorchVersion = "1",
GpuDriverVersion = "1",
CudaVersion = "1",
NcclVersion = "1",
},
PipelineOrder = 1,
Scene = "baseline",
},
},
PrivacyLevel = "private",
TemplateName = name,
TemplateDescription = name,
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.alicloud.eflo.ExperimentPlanTemplate;
import com.pulumi.alicloud.eflo.ExperimentPlanTemplateArgs;
import com.pulumi.alicloud.eflo.inputs.ExperimentPlanTemplateTemplatePipelineArgs;
import com.pulumi.alicloud.eflo.inputs.ExperimentPlanTemplateTemplatePipelineEnvParamsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
final var config = ctx.config();
final var name = config.get("name").orElse("terraform-example");
var default_ = new ExperimentPlanTemplate("default", ExperimentPlanTemplateArgs.builder()
.templatePipelines(ExperimentPlanTemplateTemplatePipelineArgs.builder()
.workloadId(2)
.workloadName("MatMul")
.envParams(ExperimentPlanTemplateTemplatePipelineEnvParamsArgs.builder()
.cpuPerWorker(90)
.gpuPerWorker(8)
.memoryPerWorker(500)
.shareMemory(500)
.workerNum(1)
.pyTorchVersion("1")
.gpuDriverVersion("1")
.cudaVersion("1")
.ncclVersion("1")
.build())
.pipelineOrder(1)
.scene("baseline")
.build())
.privacyLevel("private")
.templateName(name)
.templateDescription(name)
.build());
}
}
configuration:
name:
type: string
default: terraform-example
resources:
default:
type: alicloud:eflo:ExperimentPlanTemplate
properties:
templatePipelines:
- workloadId: '2'
workloadName: MatMul
envParams:
cpuPerWorker: '90'
gpuPerWorker: '8'
memoryPerWorker: '500'
shareMemory: '500'
workerNum: '1'
pyTorchVersion: '1'
gpuDriverVersion: '1'
cudaVersion: '1'
ncclVersion: '1'
pipelineOrder: '1'
scene: baseline
privacyLevel: private
templateName: ${name}
templateDescription: ${name}
Create ExperimentPlanTemplate Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new ExperimentPlanTemplate(name: string, args: ExperimentPlanTemplateArgs, opts?: CustomResourceOptions);
@overload
def ExperimentPlanTemplate(resource_name: str,
args: ExperimentPlanTemplateArgs,
opts: Optional[ResourceOptions] = None)
@overload
def ExperimentPlanTemplate(resource_name: str,
opts: Optional[ResourceOptions] = None,
privacy_level: Optional[str] = None,
template_name: Optional[str] = None,
template_pipelines: Optional[Sequence[ExperimentPlanTemplateTemplatePipelineArgs]] = None,
template_description: Optional[str] = None)
func NewExperimentPlanTemplate(ctx *Context, name string, args ExperimentPlanTemplateArgs, opts ...ResourceOption) (*ExperimentPlanTemplate, error)
public ExperimentPlanTemplate(string name, ExperimentPlanTemplateArgs args, CustomResourceOptions? opts = null)
public ExperimentPlanTemplate(String name, ExperimentPlanTemplateArgs args)
public ExperimentPlanTemplate(String name, ExperimentPlanTemplateArgs args, CustomResourceOptions options)
type: alicloud:eflo:ExperimentPlanTemplate
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ExperimentPlanTemplateArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ExperimentPlanTemplateArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ExperimentPlanTemplateArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ExperimentPlanTemplateArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ExperimentPlanTemplateArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var experimentPlanTemplateResource = new AliCloud.Eflo.ExperimentPlanTemplate("experimentPlanTemplateResource", new()
{
PrivacyLevel = "string",
TemplateName = "string",
TemplatePipelines = new[]
{
new AliCloud.Eflo.Inputs.ExperimentPlanTemplateTemplatePipelineArgs
{
EnvParams = new AliCloud.Eflo.Inputs.ExperimentPlanTemplateTemplatePipelineEnvParamsArgs
{
CpuPerWorker = 0,
GpuPerWorker = 0,
MemoryPerWorker = 0,
ShareMemory = 0,
WorkerNum = 0,
CudaVersion = "string",
GpuDriverVersion = "string",
NcclVersion = "string",
PyTorchVersion = "string",
},
PipelineOrder = 0,
Scene = "string",
WorkloadId = 0,
WorkloadName = "string",
SettingParams =
{
{ "string", "string" },
},
},
},
TemplateDescription = "string",
});
example, err := eflo.NewExperimentPlanTemplate(ctx, "experimentPlanTemplateResource", &eflo.ExperimentPlanTemplateArgs{
PrivacyLevel: pulumi.String("string"),
TemplateName: pulumi.String("string"),
TemplatePipelines: eflo.ExperimentPlanTemplateTemplatePipelineArray{
&eflo.ExperimentPlanTemplateTemplatePipelineArgs{
EnvParams: &eflo.ExperimentPlanTemplateTemplatePipelineEnvParamsArgs{
CpuPerWorker: pulumi.Int(0),
GpuPerWorker: pulumi.Int(0),
MemoryPerWorker: pulumi.Int(0),
ShareMemory: pulumi.Int(0),
WorkerNum: pulumi.Int(0),
CudaVersion: pulumi.String("string"),
GpuDriverVersion: pulumi.String("string"),
NcclVersion: pulumi.String("string"),
PyTorchVersion: pulumi.String("string"),
},
PipelineOrder: pulumi.Int(0),
Scene: pulumi.String("string"),
WorkloadId: pulumi.Int(0),
WorkloadName: pulumi.String("string"),
SettingParams: pulumi.StringMap{
"string": pulumi.String("string"),
},
},
},
TemplateDescription: pulumi.String("string"),
})
var experimentPlanTemplateResource = new ExperimentPlanTemplate("experimentPlanTemplateResource", ExperimentPlanTemplateArgs.builder()
.privacyLevel("string")
.templateName("string")
.templatePipelines(ExperimentPlanTemplateTemplatePipelineArgs.builder()
.envParams(ExperimentPlanTemplateTemplatePipelineEnvParamsArgs.builder()
.cpuPerWorker(0)
.gpuPerWorker(0)
.memoryPerWorker(0)
.shareMemory(0)
.workerNum(0)
.cudaVersion("string")
.gpuDriverVersion("string")
.ncclVersion("string")
.pyTorchVersion("string")
.build())
.pipelineOrder(0)
.scene("string")
.workloadId(0)
.workloadName("string")
.settingParams(Map.of("string", "string"))
.build())
.templateDescription("string")
.build());
experiment_plan_template_resource = alicloud.eflo.ExperimentPlanTemplate("experimentPlanTemplateResource",
privacy_level="string",
template_name="string",
template_pipelines=[{
"env_params": {
"cpu_per_worker": 0,
"gpu_per_worker": 0,
"memory_per_worker": 0,
"share_memory": 0,
"worker_num": 0,
"cuda_version": "string",
"gpu_driver_version": "string",
"nccl_version": "string",
"py_torch_version": "string",
},
"pipeline_order": 0,
"scene": "string",
"workload_id": 0,
"workload_name": "string",
"setting_params": {
"string": "string",
},
}],
template_description="string")
const experimentPlanTemplateResource = new alicloud.eflo.ExperimentPlanTemplate("experimentPlanTemplateResource", {
privacyLevel: "string",
templateName: "string",
templatePipelines: [{
envParams: {
cpuPerWorker: 0,
gpuPerWorker: 0,
memoryPerWorker: 0,
shareMemory: 0,
workerNum: 0,
cudaVersion: "string",
gpuDriverVersion: "string",
ncclVersion: "string",
pyTorchVersion: "string",
},
pipelineOrder: 0,
scene: "string",
workloadId: 0,
workloadName: "string",
settingParams: {
string: "string",
},
}],
templateDescription: "string",
});
type: alicloud:eflo:ExperimentPlanTemplate
properties:
privacyLevel: string
templateDescription: string
templateName: string
templatePipelines:
- envParams:
cpuPerWorker: 0
cudaVersion: string
gpuDriverVersion: string
gpuPerWorker: 0
memoryPerWorker: 0
ncclVersion: string
pyTorchVersion: string
shareMemory: 0
workerNum: 0
pipelineOrder: 0
scene: string
settingParams:
string: string
workloadId: 0
workloadName: string
ExperimentPlanTemplate Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The ExperimentPlanTemplate resource accepts the following input properties:
- Privacy
Level string - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- Template
Name string - Help users identify and select specific templates.
- Template
Pipelines List<Pulumi.Ali Cloud. Eflo. Inputs. Experiment Plan Template Template Pipeline> - Representative Template Pipeline. See
template_pipeline
below. - Template
Description string - Describe the purpose of this template.
- Privacy
Level string - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- Template
Name string - Help users identify and select specific templates.
- Template
Pipelines []ExperimentPlan Template Template Pipeline Args - Representative Template Pipeline. See
template_pipeline
below. - Template
Description string - Describe the purpose of this template.
- privacy
Level String - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template
Name String - Help users identify and select specific templates.
- template
Pipelines List<ExperimentPlan Template Template Pipeline> - Representative Template Pipeline. See
template_pipeline
below. - template
Description String - Describe the purpose of this template.
- privacy
Level string - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template
Name string - Help users identify and select specific templates.
- template
Pipelines ExperimentPlan Template Template Pipeline[] - Representative Template Pipeline. See
template_pipeline
below. - template
Description string - Describe the purpose of this template.
- privacy_
level str - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template_
name str - Help users identify and select specific templates.
- template_
pipelines Sequence[ExperimentPlan Template Template Pipeline Args] - Representative Template Pipeline. See
template_pipeline
below. - template_
description str - Describe the purpose of this template.
- privacy
Level String - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template
Name String - Help users identify and select specific templates.
- template
Pipelines List<Property Map> - Representative Template Pipeline. See
template_pipeline
below. - template
Description String - Describe the purpose of this template.
Outputs
All input properties are implicitly available as output properties. Additionally, the ExperimentPlanTemplate resource produces the following output properties:
- Create
Time string - The creation time of the resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- Template
Id string - The ID of the template.
- Create
Time string - The creation time of the resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- Template
Id string - The ID of the template.
- create
Time String - The creation time of the resource.
- id String
- The provider-assigned unique ID for this managed resource.
- template
Id String - The ID of the template.
- create
Time string - The creation time of the resource.
- id string
- The provider-assigned unique ID for this managed resource.
- template
Id string - The ID of the template.
- create_
time str - The creation time of the resource.
- id str
- The provider-assigned unique ID for this managed resource.
- template_
id str - The ID of the template.
- create
Time String - The creation time of the resource.
- id String
- The provider-assigned unique ID for this managed resource.
- template
Id String - The ID of the template.
Look up Existing ExperimentPlanTemplate Resource
Get an existing ExperimentPlanTemplate resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ExperimentPlanTemplateState, opts?: CustomResourceOptions): ExperimentPlanTemplate
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
create_time: Optional[str] = None,
privacy_level: Optional[str] = None,
template_description: Optional[str] = None,
template_id: Optional[str] = None,
template_name: Optional[str] = None,
template_pipelines: Optional[Sequence[ExperimentPlanTemplateTemplatePipelineArgs]] = None) -> ExperimentPlanTemplate
func GetExperimentPlanTemplate(ctx *Context, name string, id IDInput, state *ExperimentPlanTemplateState, opts ...ResourceOption) (*ExperimentPlanTemplate, error)
public static ExperimentPlanTemplate Get(string name, Input<string> id, ExperimentPlanTemplateState? state, CustomResourceOptions? opts = null)
public static ExperimentPlanTemplate get(String name, Output<String> id, ExperimentPlanTemplateState state, CustomResourceOptions options)
resources: _: type: alicloud:eflo:ExperimentPlanTemplate get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Create
Time string - The creation time of the resource.
- Privacy
Level string - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- Template
Description string - Describe the purpose of this template.
- Template
Id string - The ID of the template.
- Template
Name string - Help users identify and select specific templates.
- Template
Pipelines List<Pulumi.Ali Cloud. Eflo. Inputs. Experiment Plan Template Template Pipeline> - Representative Template Pipeline. See
template_pipeline
below.
- Create
Time string - The creation time of the resource.
- Privacy
Level string - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- Template
Description string - Describe the purpose of this template.
- Template
Id string - The ID of the template.
- Template
Name string - Help users identify and select specific templates.
- Template
Pipelines []ExperimentPlan Template Template Pipeline Args - Representative Template Pipeline. See
template_pipeline
below.
- create
Time String - The creation time of the resource.
- privacy
Level String - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template
Description String - Describe the purpose of this template.
- template
Id String - The ID of the template.
- template
Name String - Help users identify and select specific templates.
- template
Pipelines List<ExperimentPlan Template Template Pipeline> - Representative Template Pipeline. See
template_pipeline
below.
- create
Time string - The creation time of the resource.
- privacy
Level string - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template
Description string - Describe the purpose of this template.
- template
Id string - The ID of the template.
- template
Name string - Help users identify and select specific templates.
- template
Pipelines ExperimentPlan Template Template Pipeline[] - Representative Template Pipeline. See
template_pipeline
below.
- create_
time str - The creation time of the resource.
- privacy_
level str - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template_
description str - Describe the purpose of this template.
- template_
id str - The ID of the template.
- template_
name str - Help users identify and select specific templates.
- template_
pipelines Sequence[ExperimentPlan Template Template Pipeline Args] - Representative Template Pipeline. See
template_pipeline
below.
- create
Time String - The creation time of the resource.
- privacy
Level String - Used to indicate the privacy level of the content or information. It can have the following optional parameters:
- private: Indicates that the content is private and restricted to specific users or permission groups. Private content is usually not publicly displayed, and only authorized users can view or edit it.
- public: Indicates that the content is public and can be accessed by anyone. Public content is usually viewable by all users and is suitable for sharing information or resources
- template
Description String - Describe the purpose of this template.
- template
Id String - The ID of the template.
- template
Name String - Help users identify and select specific templates.
- template
Pipelines List<Property Map> - Representative Template Pipeline. See
template_pipeline
below.
Supporting Types
ExperimentPlanTemplateTemplatePipeline, ExperimentPlanTemplateTemplatePipelineArgs
- Env
Params Pulumi.Ali Cloud. Eflo. Inputs. Experiment Plan Template Template Pipeline Env Params - Contains a series of parameters related to the environment. See
env_params
below. - Pipeline
Order int - Indicates the sequence number of the pipeline node.
- Scene string
- The use of the template scenario. It can have the following optional parameters:
- baseline: benchmark evaluation
- Workload
Id int - Used to uniquely identify a specific payload.
- Workload
Name string - The name used to represent a specific payload.
- Setting
Params Dictionary<string, string> - Represents additional parameters for the run.
- Env
Params ExperimentPlan Template Template Pipeline Env Params - Contains a series of parameters related to the environment. See
env_params
below. - Pipeline
Order int - Indicates the sequence number of the pipeline node.
- Scene string
- The use of the template scenario. It can have the following optional parameters:
- baseline: benchmark evaluation
- Workload
Id int - Used to uniquely identify a specific payload.
- Workload
Name string - The name used to represent a specific payload.
- Setting
Params map[string]string - Represents additional parameters for the run.
- env
Params ExperimentPlan Template Template Pipeline Env Params - Contains a series of parameters related to the environment. See
env_params
below. - pipeline
Order Integer - Indicates the sequence number of the pipeline node.
- scene String
- The use of the template scenario. It can have the following optional parameters:
- baseline: benchmark evaluation
- workload
Id Integer - Used to uniquely identify a specific payload.
- workload
Name String - The name used to represent a specific payload.
- setting
Params Map<String,String> - Represents additional parameters for the run.
- env
Params ExperimentPlan Template Template Pipeline Env Params - Contains a series of parameters related to the environment. See
env_params
below. - pipeline
Order number - Indicates the sequence number of the pipeline node.
- scene string
- The use of the template scenario. It can have the following optional parameters:
- baseline: benchmark evaluation
- workload
Id number - Used to uniquely identify a specific payload.
- workload
Name string - The name used to represent a specific payload.
- setting
Params {[key: string]: string} - Represents additional parameters for the run.
- env_
params ExperimentPlan Template Template Pipeline Env Params - Contains a series of parameters related to the environment. See
env_params
below. - pipeline_
order int - Indicates the sequence number of the pipeline node.
- scene str
- The use of the template scenario. It can have the following optional parameters:
- baseline: benchmark evaluation
- workload_
id int - Used to uniquely identify a specific payload.
- workload_
name str - The name used to represent a specific payload.
- setting_
params Mapping[str, str] - Represents additional parameters for the run.
- env
Params Property Map - Contains a series of parameters related to the environment. See
env_params
below. - pipeline
Order Number - Indicates the sequence number of the pipeline node.
- scene String
- The use of the template scenario. It can have the following optional parameters:
- baseline: benchmark evaluation
- workload
Id Number - Used to uniquely identify a specific payload.
- workload
Name String - The name used to represent a specific payload.
- setting
Params Map<String> - Represents additional parameters for the run.
ExperimentPlanTemplateTemplatePipelineEnvParams, ExperimentPlanTemplateTemplatePipelineEnvParamsArgs
- Cpu
Per intWorker - Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
- Gpu
Per intWorker - Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
- Memory
Per intWorker - The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
- int
- Shared memory GB allocation
- Worker
Num int - The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
- Cuda
Version string - The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
- Gpu
Driver stringVersion - The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
- Nccl
Version string - The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
- Py
Torch stringVersion - The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
- Cpu
Per intWorker - Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
- Gpu
Per intWorker - Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
- Memory
Per intWorker - The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
- int
- Shared memory GB allocation
- Worker
Num int - The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
- Cuda
Version string - The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
- Gpu
Driver stringVersion - The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
- Nccl
Version string - The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
- Py
Torch stringVersion - The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
- cpu
Per IntegerWorker - Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
- gpu
Per IntegerWorker - Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
- memory
Per IntegerWorker - The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
- Integer
- Shared memory GB allocation
- worker
Num Integer - The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
- cuda
Version String - The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
- gpu
Driver StringVersion - The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
- nccl
Version String - The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
- py
Torch StringVersion - The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
- cpu
Per numberWorker - Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
- gpu
Per numberWorker - Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
- memory
Per numberWorker - The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
- number
- Shared memory GB allocation
- worker
Num number - The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
- cuda
Version string - The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
- gpu
Driver stringVersion - The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
- nccl
Version string - The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
- py
Torch stringVersion - The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
- cpu_
per_ intworker - Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
- gpu_
per_ intworker - Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
- memory_
per_ intworker - The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
- int
- Shared memory GB allocation
- worker_
num int - The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
- cuda_
version str - The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
- gpu_
driver_ strversion - The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
- nccl_
version str - The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
- py_
torch_ strversion - The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
- cpu
Per NumberWorker - Number of central processing units (CPUs) allocated. This parameter affects the processing power of the computation, especially in tasks that require a large amount of parallel processing.
- gpu
Per NumberWorker - Number of graphics processing units (GPUs). GPUs are a key component in deep learning and large-scale data processing, so this parameter is very important for tasks that require graphics-accelerated computing.
- memory
Per NumberWorker - The amount of memory available. Memory size has an important impact on the performance and stability of the program, especially when dealing with large data sets or high-dimensional data.
- Number
- Shared memory GB allocation
- worker
Num Number - The total number of nodes. This parameter directly affects the parallelism and computing speed of the task, and a higher number of working nodes usually accelerates the completion of the task.
- cuda
Version String - The version of CUDA(Compute Unified Device Architecture) used. CUDA is a parallel computing platform and programming model provided by NVIDIA. A specific version may affect the available GPU functions and performance optimization.
- gpu
Driver StringVersion - The version of the GPU driver used. Driver version may affect GPU performance and compatibility, so it is important to ensure that the correct version is used
- nccl
Version String - The NVIDIA Collective Communications Library(NCCL) version used. NCCL is a library for multi-GPU and multi-node communication. This parameter is particularly important for optimizing data transmission in distributed computing.
- py
Torch StringVersion - The version of the PyTorch framework used. PyTorch is a widely used deep learning library, and differences between versions may affect the performance and functional support of model training and inference.
Import
Eflo Experiment Plan Template can be imported using the id, e.g.
$ pulumi import alicloud:eflo/experimentPlanTemplate:ExperimentPlanTemplate example <id>
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- Alibaba Cloud pulumi/pulumi-alicloud
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
alicloud
Terraform Provider.