Oracle Cloud Infrastructure v2.33.0 published on Thursday, May 1, 2025 by Pulumi
oci.AiDocument.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Document service.
Get a model by identifier.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiDocument.getModel({
    modelId: testModelOciAiDocumentModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiDocument.get_model(model_id=test_model_oci_ai_document_model["id"])
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aidocument"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aidocument.GetModel(ctx, &aidocument.GetModelArgs{
			ModelId: testModelOciAiDocumentModel.Id,
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = Oci.AiDocument.GetModel.Invoke(new()
    {
        ModelId = testModelOciAiDocumentModel.Id,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiDocument.AiDocumentFunctions;
import com.pulumi.oci.AiDocument.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModel = AiDocumentFunctions.getModel(GetModelArgs.builder()
            .modelId(testModelOciAiDocumentModel.id())
            .build());
    }
}
variables:
  testModel:
    fn::invoke:
      function: oci:AiDocument:getModel
      arguments:
        modelId: ${testModelOciAiDocumentModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>def get_model(model_id: Optional[str] = None,
              opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
              opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]func LookupModel(ctx *Context, args *LookupModelArgs, opts ...InvokeOption) (*LookupModelResult, error)
func LookupModelOutput(ctx *Context, args *LookupModelOutputArgs, opts ...InvokeOption) LookupModelResultOutput> Note: This function is named LookupModel in the Go SDK.
public static class GetModel 
{
    public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
    public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
public static Output<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
fn::invoke:
  function: oci:AiDocument/getModel:getModel
  arguments:
    # arguments dictionaryThe following arguments are supported:
- ModelId string
- A unique model identifier.
- ModelId string
- A unique model identifier.
- modelId String
- A unique model identifier.
- modelId string
- A unique model identifier.
- model_id str
- A unique model identifier.
- modelId String
- A unique model identifier.
getModel Result
The following output properties are available:
- CompartmentId string
- The compartment identifier.
- ComponentModels List<GetModel Component Model> 
- The OCID collection of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- An optional description of the model.
- DisplayName string
- A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- Id string
- A unique identifier that is immutable after creation.
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- Labels List<string>
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- MaxTraining doubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
List<GetModel Metric> 
- Trained Model Metrics.
- ModelId string
- The OCID of active custom Key Value model that need to be composed.
- ModelType string
- The type of the Document model.
- ModelVersion string
- The version of the model.
- ProjectId string
- The OCID of the project that contains the model.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TestingDatasets List<GetModel Testing Dataset> 
- The base entity which is the input for creating and training a model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime doubleIn Hours 
- The total hours actually used for model training.
- TrainingDatasets List<GetModel Training Dataset> 
- The base entity which is the input for creating and training a model.
- ValidationDatasets List<GetModel Validation Dataset> 
- The base entity which is the input for creating and training a model.
- CompartmentId string
- The compartment identifier.
- ComponentModels []GetModel Component Model 
- The OCID collection of active custom Key Value models that need to be composed.
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- An optional description of the model.
- DisplayName string
- A human-friendly name for the model, which can be changed.
- map[string]string
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- Id string
- A unique identifier that is immutable after creation.
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- Labels []string
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- MaxTraining float64Time In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
[]GetModel Metric 
- Trained Model Metrics.
- ModelId string
- The OCID of active custom Key Value model that need to be composed.
- ModelType string
- The type of the Document model.
- ModelVersion string
- The version of the model.
- ProjectId string
- The OCID of the project that contains the model.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TestingDatasets []GetModel Testing Dataset 
- The base entity which is the input for creating and training a model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime float64In Hours 
- The total hours actually used for model training.
- TrainingDatasets []GetModel Training Dataset 
- The base entity which is the input for creating and training a model.
- ValidationDatasets []GetModel Validation Dataset 
- The base entity which is the input for creating and training a model.
- compartmentId String
- The compartment identifier.
- componentModels List<GetModel Component Model> 
- The OCID collection of active custom Key Value models that need to be composed.
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- An optional description of the model.
- displayName String
- A human-friendly name for the model, which can be changed.
- Map<String,String>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id String
- A unique identifier that is immutable after creation.
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining DoubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
List<GetModel Metric> 
- Trained Model Metrics.
- modelId String
- The OCID of active custom Key Value model that need to be composed.
- modelType String
- The type of the Document model.
- modelVersion String
- The version of the model.
- projectId String
- The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- testingDatasets List<GetModel Testing Dataset> 
- The base entity which is the input for creating and training a model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime DoubleIn Hours 
- The total hours actually used for model training.
- trainingDatasets List<GetModel Training Dataset> 
- The base entity which is the input for creating and training a model.
- validationDatasets List<GetModel Validation Dataset> 
- The base entity which is the input for creating and training a model.
- compartmentId string
- The compartment identifier.
- componentModels GetModel Component Model[] 
- The OCID collection of active custom Key Value models that need to be composed.
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description string
- An optional description of the model.
- displayName string
- A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id string
- A unique identifier that is immutable after creation.
- isComposed booleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick booleanMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining numberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
GetModel Metric[] 
- Trained Model Metrics.
- modelId string
- The OCID of active custom Key Value model that need to be composed.
- modelType string
- The type of the Document model.
- modelVersion string
- The version of the model.
- projectId string
- The OCID of the project that contains the model.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId string
- The tenancy id of the model.
- testingDatasets GetModel Testing Dataset[] 
- The base entity which is the input for creating and training a model.
- timeCreated string
- When the model was created, as an RFC3339 datetime string.
- timeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- trainedTime numberIn Hours 
- The total hours actually used for model training.
- trainingDatasets GetModel Training Dataset[] 
- The base entity which is the input for creating and training a model.
- validationDatasets GetModel Validation Dataset[] 
- The base entity which is the input for creating and training a model.
- compartment_id str
- The compartment identifier.
- component_models Sequence[GetModel Component Model] 
- The OCID collection of active custom Key Value models that need to be composed.
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description str
- An optional description of the model.
- display_name str
- A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id str
- A unique identifier that is immutable after creation.
- is_composed_ boolmodel 
- Set to true when the model is created by using multiple key value extraction models.
- is_quick_ boolmode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_details str
- A message describing the current state in more detail, that can provide actionable information if training failed.
- max_training_ floattime_ in_ hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Sequence[GetModel Metric] 
- Trained Model Metrics.
- model_id str
- The OCID of active custom Key Value model that need to be composed.
- model_type str
- The type of the Document model.
- model_version str
- The version of the model.
- project_id str
- The OCID of the project that contains the model.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_id str
- The tenancy id of the model.
- testing_datasets Sequence[GetModel Testing Dataset] 
- The base entity which is the input for creating and training a model.
- time_created str
- When the model was created, as an RFC3339 datetime string.
- time_updated str
- When the model was updated, as an RFC3339 datetime string.
- trained_time_ floatin_ hours 
- The total hours actually used for model training.
- training_datasets Sequence[GetModel Training Dataset] 
- The base entity which is the input for creating and training a model.
- validation_datasets Sequence[GetModel Validation Dataset] 
- The base entity which is the input for creating and training a model.
- compartmentId String
- The compartment identifier.
- componentModels List<Property Map>
- The OCID collection of active custom Key Value models that need to be composed.
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- An optional description of the model.
- displayName String
- A human-friendly name for the model, which can be changed.
- Map<String>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id String
- A unique identifier that is immutable after creation.
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining NumberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics List<Property Map>
- Trained Model Metrics.
- modelId String
- The OCID of active custom Key Value model that need to be composed.
- modelType String
- The type of the Document model.
- modelVersion String
- The version of the model.
- projectId String
- The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- testingDatasets List<Property Map>
- The base entity which is the input for creating and training a model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime NumberIn Hours 
- The total hours actually used for model training.
- trainingDatasets List<Property Map>
- The base entity which is the input for creating and training a model.
- validationDatasets List<Property Map>
- The base entity which is the input for creating and training a model.
Supporting Types
GetModelComponentModel   
- ModelId string
- A unique model identifier.
- ModelId string
- A unique model identifier.
- modelId String
- A unique model identifier.
- modelId string
- A unique model identifier.
- model_id str
- A unique model identifier.
- modelId String
- A unique model identifier.
GetModelMetric  
- DatasetSummaries List<GetModel Metric Dataset Summary> 
- Summary of count of samples used during model training.
- LabelMetrics List<GetReports Model Metric Label Metrics Report> 
- List of metrics entries per label.
- ModelType string
- The type of the Document model.
- OverallMetrics List<GetReports Model Metric Overall Metrics Report> 
- Overall Metrics report for Document Classification Model.
- DatasetSummaries []GetModel Metric Dataset Summary 
- Summary of count of samples used during model training.
- LabelMetrics []GetReports Model Metric Label Metrics Report 
- List of metrics entries per label.
- ModelType string
- The type of the Document model.
- OverallMetrics []GetReports Model Metric Overall Metrics Report 
- Overall Metrics report for Document Classification Model.
- datasetSummaries List<GetModel Metric Dataset Summary> 
- Summary of count of samples used during model training.
- labelMetrics List<GetReports Model Metric Label Metrics Report> 
- List of metrics entries per label.
- modelType String
- The type of the Document model.
- overallMetrics List<GetReports Model Metric Overall Metrics Report> 
- Overall Metrics report for Document Classification Model.
- datasetSummaries GetModel Metric Dataset Summary[] 
- Summary of count of samples used during model training.
- labelMetrics GetReports Model Metric Label Metrics Report[] 
- List of metrics entries per label.
- modelType string
- The type of the Document model.
- overallMetrics GetReports Model Metric Overall Metrics Report[] 
- Overall Metrics report for Document Classification Model.
- dataset_summaries Sequence[GetModel Metric Dataset Summary] 
- Summary of count of samples used during model training.
- label_metrics_ Sequence[Getreports Model Metric Label Metrics Report] 
- List of metrics entries per label.
- model_type str
- The type of the Document model.
- overall_metrics_ Sequence[Getreports Model Metric Overall Metrics Report] 
- Overall Metrics report for Document Classification Model.
- datasetSummaries List<Property Map>
- Summary of count of samples used during model training.
- labelMetrics List<Property Map>Reports 
- List of metrics entries per label.
- modelType String
- The type of the Document model.
- overallMetrics List<Property Map>Reports 
- Overall Metrics report for Document Classification Model.
GetModelMetricDatasetSummary    
- TestSample intCount 
- Number of samples used for testing the model.
- TrainingSample intCount 
- Number of samples used for training the model.
- ValidationSample intCount 
- Number of samples used for validating the model.
- TestSample intCount 
- Number of samples used for testing the model.
- TrainingSample intCount 
- Number of samples used for training the model.
- ValidationSample intCount 
- Number of samples used for validating the model.
- testSample IntegerCount 
- Number of samples used for testing the model.
- trainingSample IntegerCount 
- Number of samples used for training the model.
- validationSample IntegerCount 
- Number of samples used for validating the model.
- testSample numberCount 
- Number of samples used for testing the model.
- trainingSample numberCount 
- Number of samples used for training the model.
- validationSample numberCount 
- Number of samples used for validating the model.
- test_sample_ intcount 
- Number of samples used for testing the model.
- training_sample_ intcount 
- Number of samples used for training the model.
- validation_sample_ intcount 
- Number of samples used for validating the model.
- testSample NumberCount 
- Number of samples used for testing the model.
- trainingSample NumberCount 
- Number of samples used for training the model.
- validationSample NumberCount 
- Number of samples used for validating the model.
GetModelMetricLabelMetricsReport     
- ConfidenceEntries List<GetModel Metric Label Metrics Report Confidence Entry> 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- Label string
- Label name
- double
- Mean average precision under different thresholds
- ConfidenceEntries []GetModel Metric Label Metrics Report Confidence Entry 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- Label string
- Label name
- float64
- Mean average precision under different thresholds
- confidenceEntries List<GetModel Metric Label Metrics Report Confidence Entry> 
- List of document classification confidence report.
- documentCount Integer
- Total test documents in the label.
- label String
- Label name
- Double
- Mean average precision under different thresholds
- confidenceEntries GetModel Metric Label Metrics Report Confidence Entry[] 
- List of document classification confidence report.
- documentCount number
- Total test documents in the label.
- label string
- Label name
- number
- Mean average precision under different thresholds
- confidence_entries Sequence[GetModel Metric Label Metrics Report Confidence Entry] 
- List of document classification confidence report.
- document_count int
- Total test documents in the label.
- label str
- Label name
- mean_average_ floatprecision 
- Mean average precision under different thresholds
- confidenceEntries List<Property Map>
- List of document classification confidence report.
- documentCount Number
- Total test documents in the label.
- label String
- Label name
- Number
- Mean average precision under different thresholds
GetModelMetricLabelMetricsReportConfidenceEntry       
GetModelMetricOverallMetricsReport     
- ConfidenceEntries List<GetModel Metric Overall Metrics Report Confidence Entry> 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- double
- Mean average precision under different thresholds
- ConfidenceEntries []GetModel Metric Overall Metrics Report Confidence Entry 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- float64
- Mean average precision under different thresholds
- confidenceEntries List<GetModel Metric Overall Metrics Report Confidence Entry> 
- List of document classification confidence report.
- documentCount Integer
- Total test documents in the label.
- Double
- Mean average precision under different thresholds
- confidenceEntries GetModel Metric Overall Metrics Report Confidence Entry[] 
- List of document classification confidence report.
- documentCount number
- Total test documents in the label.
- number
- Mean average precision under different thresholds
- confidence_entries Sequence[GetModel Metric Overall Metrics Report Confidence Entry] 
- List of document classification confidence report.
- document_count int
- Total test documents in the label.
- mean_average_ floatprecision 
- Mean average precision under different thresholds
- confidenceEntries List<Property Map>
- List of document classification confidence report.
- documentCount Number
- Total test documents in the label.
- Number
- Mean average precision under different thresholds
GetModelMetricOverallMetricsReportConfidenceEntry       
GetModelTestingDataset   
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- datasetType string
- The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- dataset_type str
- The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelTrainingDataset   
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- datasetType string
- The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- dataset_type str
- The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelValidationDataset   
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- datasetType string
- The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- dataset_type str
- The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.