Oracle Cloud Infrastructure v2.33.0 published on Thursday, May 1, 2025 by Pulumi
oci.AiDocument.getModels
Explore with Pulumi AI
This data source provides the list of Models in Oracle Cloud Infrastructure Ai Document service.
Returns a list of models in a compartment.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModels = oci.AiDocument.getModels({
    compartmentId: compartmentId,
    displayName: modelDisplayName,
    id: modelId,
    projectId: testProject.id,
    state: modelState,
});
import pulumi
import pulumi_oci as oci
test_models = oci.AiDocument.get_models(compartment_id=compartment_id,
    display_name=model_display_name,
    id=model_id,
    project_id=test_project["id"],
    state=model_state)
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aidocument"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aidocument.GetModels(ctx, &aidocument.GetModelsArgs{
			CompartmentId: pulumi.StringRef(compartmentId),
			DisplayName:   pulumi.StringRef(modelDisplayName),
			Id:            pulumi.StringRef(modelId),
			ProjectId:     pulumi.StringRef(testProject.Id),
			State:         pulumi.StringRef(modelState),
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModels = Oci.AiDocument.GetModels.Invoke(new()
    {
        CompartmentId = compartmentId,
        DisplayName = modelDisplayName,
        Id = modelId,
        ProjectId = testProject.Id,
        State = modelState,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiDocument.AiDocumentFunctions;
import com.pulumi.oci.AiDocument.inputs.GetModelsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModels = AiDocumentFunctions.getModels(GetModelsArgs.builder()
            .compartmentId(compartmentId)
            .displayName(modelDisplayName)
            .id(modelId)
            .projectId(testProject.id())
            .state(modelState)
            .build());
    }
}
variables:
  testModels:
    fn::invoke:
      function: oci:AiDocument:getModels
      arguments:
        compartmentId: ${compartmentId}
        displayName: ${modelDisplayName}
        id: ${modelId}
        projectId: ${testProject.id}
        state: ${modelState}
Using getModels
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModels(args: GetModelsArgs, opts?: InvokeOptions): Promise<GetModelsResult>
function getModelsOutput(args: GetModelsOutputArgs, opts?: InvokeOptions): Output<GetModelsResult>def get_models(compartment_id: Optional[str] = None,
               display_name: Optional[str] = None,
               filters: Optional[Sequence[GetModelsFilter]] = None,
               id: Optional[str] = None,
               project_id: Optional[str] = None,
               state: Optional[str] = None,
               opts: Optional[InvokeOptions] = None) -> GetModelsResult
def get_models_output(compartment_id: Optional[pulumi.Input[str]] = None,
               display_name: Optional[pulumi.Input[str]] = None,
               filters: Optional[pulumi.Input[Sequence[pulumi.Input[GetModelsFilterArgs]]]] = None,
               id: Optional[pulumi.Input[str]] = None,
               project_id: Optional[pulumi.Input[str]] = None,
               state: Optional[pulumi.Input[str]] = None,
               opts: Optional[InvokeOptions] = None) -> Output[GetModelsResult]func GetModels(ctx *Context, args *GetModelsArgs, opts ...InvokeOption) (*GetModelsResult, error)
func GetModelsOutput(ctx *Context, args *GetModelsOutputArgs, opts ...InvokeOption) GetModelsResultOutput> Note: This function is named GetModels in the Go SDK.
public static class GetModels 
{
    public static Task<GetModelsResult> InvokeAsync(GetModelsArgs args, InvokeOptions? opts = null)
    public static Output<GetModelsResult> Invoke(GetModelsInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
public static Output<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
fn::invoke:
  function: oci:AiDocument/getModels:getModels
  arguments:
    # arguments dictionaryThe following arguments are supported:
- CompartmentId string
- The ID of the compartment in which to list resources.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- Filters
List<GetModels Filter> 
- Id string
- The filter to find the model with the given identifier.
- ProjectId string
- The ID of the project for which to list the objects.
- State string
- The filter to match models with the given lifecycleState.
- CompartmentId string
- The ID of the compartment in which to list resources.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- Filters
[]GetModels Filter 
- Id string
- The filter to find the model with the given identifier.
- ProjectId string
- The ID of the project for which to list the objects.
- State string
- The filter to match models with the given lifecycleState.
- compartmentId String
- The ID of the compartment in which to list resources.
- displayName String
- A filter to return only resources that match the entire display name given.
- filters
List<GetModels Filter> 
- id String
- The filter to find the model with the given identifier.
- projectId String
- The ID of the project for which to list the objects.
- state String
- The filter to match models with the given lifecycleState.
- compartmentId string
- The ID of the compartment in which to list resources.
- displayName string
- A filter to return only resources that match the entire display name given.
- filters
GetModels Filter[] 
- id string
- The filter to find the model with the given identifier.
- projectId string
- The ID of the project for which to list the objects.
- state string
- The filter to match models with the given lifecycleState.
- compartment_id str
- The ID of the compartment in which to list resources.
- display_name str
- A filter to return only resources that match the entire display name given.
- filters
Sequence[GetModels Filter] 
- id str
- The filter to find the model with the given identifier.
- project_id str
- The ID of the project for which to list the objects.
- state str
- The filter to match models with the given lifecycleState.
- compartmentId String
- The ID of the compartment in which to list resources.
- displayName String
- A filter to return only resources that match the entire display name given.
- filters List<Property Map>
- id String
- The filter to find the model with the given identifier.
- projectId String
- The ID of the project for which to list the objects.
- state String
- The filter to match models with the given lifecycleState.
getModels Result
The following output properties are available:
- ModelCollections List<GetModels Model Collection> 
- The list of model_collection.
- CompartmentId string
- The compartment identifier.
- DisplayName string
- A human-friendly name for the model, which can be changed.
- Filters
List<GetModels Filter> 
- Id string
- A unique identifier that is immutable after creation.
- ProjectId string
- The OCID of the project that contains the model.
- State string
- The current state of the model.
- ModelCollections []GetModels Model Collection 
- The list of model_collection.
- CompartmentId string
- The compartment identifier.
- DisplayName string
- A human-friendly name for the model, which can be changed.
- Filters
[]GetModels Filter 
- Id string
- A unique identifier that is immutable after creation.
- ProjectId string
- The OCID of the project that contains the model.
- State string
- The current state of the model.
- modelCollections List<GetModels Model Collection> 
- The list of model_collection.
- compartmentId String
- The compartment identifier.
- displayName String
- A human-friendly name for the model, which can be changed.
- filters
List<GetModels Filter> 
- id String
- A unique identifier that is immutable after creation.
- projectId String
- The OCID of the project that contains the model.
- state String
- The current state of the model.
- modelCollections GetModels Model Collection[] 
- The list of model_collection.
- compartmentId string
- The compartment identifier.
- displayName string
- A human-friendly name for the model, which can be changed.
- filters
GetModels Filter[] 
- id string
- A unique identifier that is immutable after creation.
- projectId string
- The OCID of the project that contains the model.
- state string
- The current state of the model.
- model_collections Sequence[GetModels Model Collection] 
- The list of model_collection.
- compartment_id str
- The compartment identifier.
- display_name str
- A human-friendly name for the model, which can be changed.
- filters
Sequence[GetModels Filter] 
- id str
- A unique identifier that is immutable after creation.
- project_id str
- The OCID of the project that contains the model.
- state str
- The current state of the model.
- modelCollections List<Property Map>
- The list of model_collection.
- compartmentId String
- The compartment identifier.
- displayName String
- A human-friendly name for the model, which can be changed.
- filters List<Property Map>
- id String
- A unique identifier that is immutable after creation.
- projectId String
- The OCID of the project that contains the model.
- state String
- The current state of the model.
Supporting Types
GetModelsFilter  
GetModelsModelCollection   
GetModelsModelCollectionItem    
- CompartmentId string
- The ID of the compartment in which to list resources.
- ComponentModels List<GetModels Model Collection Item Component Model> 
- The OCID collection of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- An optional description of the model.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- Dictionary<string, string>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- Id string
- The filter to find the model with the given identifier.
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- Labels List<string>
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- MaxTraining doubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
List<GetModels Model Collection Item Metric> 
- Trained Model Metrics.
- ModelId string
- The OCID of active custom Key Value model that need to be composed.
- ModelType string
- The type of the Document model.
- ModelVersion string
- The version of the model.
- ProjectId string
- The ID of the project for which to list the objects.
- State string
- The filter to match models with the given lifecycleState.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TestingDatasets List<GetModels Model Collection Item Testing Dataset> 
- The base entity which is the input for creating and training a model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime doubleIn Hours 
- The total hours actually used for model training.
- TrainingDatasets List<GetModels Model Collection Item Training Dataset> 
- The base entity which is the input for creating and training a model.
- ValidationDatasets List<GetModels Model Collection Item Validation Dataset> 
- The base entity which is the input for creating and training a model.
- CompartmentId string
- The ID of the compartment in which to list resources.
- ComponentModels []GetModels Model Collection Item Component Model 
- The OCID collection of active custom Key Value models that need to be composed.
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- An optional description of the model.
- DisplayName string
- A filter to return only resources that match the entire display name given.
- map[string]string
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- Id string
- The filter to find the model with the given identifier.
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- Labels []string
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- MaxTraining float64Time In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
[]GetModels Model Collection Item Metric 
- Trained Model Metrics.
- ModelId string
- The OCID of active custom Key Value model that need to be composed.
- ModelType string
- The type of the Document model.
- ModelVersion string
- The version of the model.
- ProjectId string
- The ID of the project for which to list the objects.
- State string
- The filter to match models with the given lifecycleState.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TestingDatasets []GetModels Model Collection Item Testing Dataset 
- The base entity which is the input for creating and training a model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime float64In Hours 
- The total hours actually used for model training.
- TrainingDatasets []GetModels Model Collection Item Training Dataset 
- The base entity which is the input for creating and training a model.
- ValidationDatasets []GetModels Model Collection Item Validation Dataset 
- The base entity which is the input for creating and training a model.
- compartmentId String
- The ID of the compartment in which to list resources.
- componentModels List<GetModels Model Collection Item Component Model> 
- The OCID collection of active custom Key Value models that need to be composed.
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- An optional description of the model.
- displayName String
- A filter to return only resources that match the entire display name given.
- Map<String,String>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id String
- The filter to find the model with the given identifier.
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining DoubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
List<GetModels Model Collection Item Metric> 
- Trained Model Metrics.
- modelId String
- The OCID of active custom Key Value model that need to be composed.
- modelType String
- The type of the Document model.
- modelVersion String
- The version of the model.
- projectId String
- The ID of the project for which to list the objects.
- state String
- The filter to match models with the given lifecycleState.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- testingDatasets List<GetModels Model Collection Item Testing Dataset> 
- The base entity which is the input for creating and training a model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime DoubleIn Hours 
- The total hours actually used for model training.
- trainingDatasets List<GetModels Model Collection Item Training Dataset> 
- The base entity which is the input for creating and training a model.
- validationDatasets List<GetModels Model Collection Item Validation Dataset> 
- The base entity which is the input for creating and training a model.
- compartmentId string
- The ID of the compartment in which to list resources.
- componentModels GetModels Model Collection Item Component Model[] 
- The OCID collection of active custom Key Value models that need to be composed.
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description string
- An optional description of the model.
- displayName string
- A filter to return only resources that match the entire display name given.
- {[key: string]: string}
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id string
- The filter to find the model with the given identifier.
- isComposed booleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick booleanMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining numberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
GetModels Model Collection Item Metric[] 
- Trained Model Metrics.
- modelId string
- The OCID of active custom Key Value model that need to be composed.
- modelType string
- The type of the Document model.
- modelVersion string
- The version of the model.
- projectId string
- The ID of the project for which to list the objects.
- state string
- The filter to match models with the given lifecycleState.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId string
- The tenancy id of the model.
- testingDatasets GetModels Model Collection Item Testing Dataset[] 
- The base entity which is the input for creating and training a model.
- timeCreated string
- When the model was created, as an RFC3339 datetime string.
- timeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- trainedTime numberIn Hours 
- The total hours actually used for model training.
- trainingDatasets GetModels Model Collection Item Training Dataset[] 
- The base entity which is the input for creating and training a model.
- validationDatasets GetModels Model Collection Item Validation Dataset[] 
- The base entity which is the input for creating and training a model.
- compartment_id str
- The ID of the compartment in which to list resources.
- component_models Sequence[GetModels Model Collection Item Component Model] 
- The OCID collection of active custom Key Value models that need to be composed.
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description str
- An optional description of the model.
- display_name str
- A filter to return only resources that match the entire display name given.
- Mapping[str, str]
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id str
- The filter to find the model with the given identifier.
- is_composed_ boolmodel 
- Set to true when the model is created by using multiple key value extraction models.
- is_quick_ boolmode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_details str
- A message describing the current state in more detail, that can provide actionable information if training failed.
- max_training_ floattime_ in_ hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Sequence[GetModels Model Collection Item Metric] 
- Trained Model Metrics.
- model_id str
- The OCID of active custom Key Value model that need to be composed.
- model_type str
- The type of the Document model.
- model_version str
- The version of the model.
- project_id str
- The ID of the project for which to list the objects.
- state str
- The filter to match models with the given lifecycleState.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_id str
- The tenancy id of the model.
- testing_datasets Sequence[GetModels Model Collection Item Testing Dataset] 
- The base entity which is the input for creating and training a model.
- time_created str
- When the model was created, as an RFC3339 datetime string.
- time_updated str
- When the model was updated, as an RFC3339 datetime string.
- trained_time_ floatin_ hours 
- The total hours actually used for model training.
- training_datasets Sequence[GetModels Model Collection Item Training Dataset] 
- The base entity which is the input for creating and training a model.
- validation_datasets Sequence[GetModels Model Collection Item Validation Dataset] 
- The base entity which is the input for creating and training a model.
- compartmentId String
- The ID of the compartment in which to list resources.
- componentModels List<Property Map>
- The OCID collection of active custom Key Value models that need to be composed.
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- An optional description of the model.
- displayName String
- A filter to return only resources that match the entire display name given.
- Map<String>
- A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- id String
- The filter to find the model with the given identifier.
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining NumberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics List<Property Map>
- Trained Model Metrics.
- modelId String
- The OCID of active custom Key Value model that need to be composed.
- modelType String
- The type of the Document model.
- modelVersion String
- The version of the model.
- projectId String
- The ID of the project for which to list the objects.
- state String
- The filter to match models with the given lifecycleState.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- testingDatasets List<Property Map>
- The base entity which is the input for creating and training a model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime NumberIn Hours 
- The total hours actually used for model training.
- trainingDatasets List<Property Map>
- The base entity which is the input for creating and training a model.
- validationDatasets List<Property Map>
- The base entity which is the input for creating and training a model.
GetModelsModelCollectionItemComponentModel      
GetModelsModelCollectionItemMetric     
- DatasetSummaries List<GetModels Model Collection Item Metric Dataset Summary> 
- Summary of count of samples used during model training.
- LabelMetrics List<GetReports Models Model Collection Item Metric Label Metrics Report> 
- List of metrics entries per label.
- ModelType string
- The type of the Document model.
- OverallMetrics List<GetReports Models Model Collection Item Metric Overall Metrics Report> 
- Overall Metrics report for Document Classification Model.
- DatasetSummaries []GetModels Model Collection Item Metric Dataset Summary 
- Summary of count of samples used during model training.
- LabelMetrics []GetReports Models Model Collection Item Metric Label Metrics Report 
- List of metrics entries per label.
- ModelType string
- The type of the Document model.
- OverallMetrics []GetReports Models Model Collection Item Metric Overall Metrics Report 
- Overall Metrics report for Document Classification Model.
- datasetSummaries List<GetModels Model Collection Item Metric Dataset Summary> 
- Summary of count of samples used during model training.
- labelMetrics List<GetReports Models Model Collection Item Metric Label Metrics Report> 
- List of metrics entries per label.
- modelType String
- The type of the Document model.
- overallMetrics List<GetReports Models Model Collection Item Metric Overall Metrics Report> 
- Overall Metrics report for Document Classification Model.
- datasetSummaries GetModels Model Collection Item Metric Dataset Summary[] 
- Summary of count of samples used during model training.
- labelMetrics GetReports Models Model Collection Item Metric Label Metrics Report[] 
- List of metrics entries per label.
- modelType string
- The type of the Document model.
- overallMetrics GetReports Models Model Collection Item Metric Overall Metrics Report[] 
- Overall Metrics report for Document Classification Model.
- dataset_summaries Sequence[GetModels Model Collection Item Metric Dataset Summary] 
- Summary of count of samples used during model training.
- label_metrics_ Sequence[Getreports Models Model Collection Item Metric Label Metrics Report] 
- List of metrics entries per label.
- model_type str
- The type of the Document model.
- overall_metrics_ Sequence[Getreports Models Model Collection Item Metric Overall Metrics Report] 
- Overall Metrics report for Document Classification Model.
- datasetSummaries List<Property Map>
- Summary of count of samples used during model training.
- labelMetrics List<Property Map>Reports 
- List of metrics entries per label.
- modelType String
- The type of the Document model.
- overallMetrics List<Property Map>Reports 
- Overall Metrics report for Document Classification Model.
GetModelsModelCollectionItemMetricDatasetSummary       
- TestSample intCount 
- Number of samples used for testing the model.
- TrainingSample intCount 
- Number of samples used for training the model.
- ValidationSample intCount 
- Number of samples used for validating the model.
- TestSample intCount 
- Number of samples used for testing the model.
- TrainingSample intCount 
- Number of samples used for training the model.
- ValidationSample intCount 
- Number of samples used for validating the model.
- testSample IntegerCount 
- Number of samples used for testing the model.
- trainingSample IntegerCount 
- Number of samples used for training the model.
- validationSample IntegerCount 
- Number of samples used for validating the model.
- testSample numberCount 
- Number of samples used for testing the model.
- trainingSample numberCount 
- Number of samples used for training the model.
- validationSample numberCount 
- Number of samples used for validating the model.
- test_sample_ intcount 
- Number of samples used for testing the model.
- training_sample_ intcount 
- Number of samples used for training the model.
- validation_sample_ intcount 
- Number of samples used for validating the model.
- testSample NumberCount 
- Number of samples used for testing the model.
- trainingSample NumberCount 
- Number of samples used for training the model.
- validationSample NumberCount 
- Number of samples used for validating the model.
GetModelsModelCollectionItemMetricLabelMetricsReport        
- ConfidenceEntries List<GetModels Model Collection Item Metric Label Metrics Report Confidence Entry> 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- Label string
- Label name
- double
- Mean average precision under different thresholds
- ConfidenceEntries []GetModels Model Collection Item Metric Label Metrics Report Confidence Entry 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- Label string
- Label name
- float64
- Mean average precision under different thresholds
- confidenceEntries List<GetModels Model Collection Item Metric Label Metrics Report Confidence Entry> 
- List of document classification confidence report.
- documentCount Integer
- Total test documents in the label.
- label String
- Label name
- Double
- Mean average precision under different thresholds
- confidenceEntries GetModels Model Collection Item Metric Label Metrics Report Confidence Entry[] 
- List of document classification confidence report.
- documentCount number
- Total test documents in the label.
- label string
- Label name
- number
- Mean average precision under different thresholds
- confidence_entries Sequence[GetModels Model Collection Item Metric Label Metrics Report Confidence Entry] 
- List of document classification confidence report.
- document_count int
- Total test documents in the label.
- label str
- Label name
- mean_average_ floatprecision 
- Mean average precision under different thresholds
- confidenceEntries List<Property Map>
- List of document classification confidence report.
- documentCount Number
- Total test documents in the label.
- label String
- Label name
- Number
- Mean average precision under different thresholds
GetModelsModelCollectionItemMetricLabelMetricsReportConfidenceEntry          
GetModelsModelCollectionItemMetricOverallMetricsReport        
- ConfidenceEntries List<GetModels Model Collection Item Metric Overall Metrics Report Confidence Entry> 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- double
- Mean average precision under different thresholds
- ConfidenceEntries []GetModels Model Collection Item Metric Overall Metrics Report Confidence Entry 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- float64
- Mean average precision under different thresholds
- confidenceEntries List<GetModels Model Collection Item Metric Overall Metrics Report Confidence Entry> 
- List of document classification confidence report.
- documentCount Integer
- Total test documents in the label.
- Double
- Mean average precision under different thresholds
- confidenceEntries GetModels Model Collection Item Metric Overall Metrics Report Confidence Entry[] 
- List of document classification confidence report.
- documentCount number
- Total test documents in the label.
- number
- Mean average precision under different thresholds
- confidence_entries Sequence[GetModels Model Collection Item Metric Overall Metrics Report Confidence Entry] 
- List of document classification confidence report.
- document_count int
- Total test documents in the label.
- mean_average_ floatprecision 
- Mean average precision under different thresholds
- confidenceEntries List<Property Map>
- List of document classification confidence report.
- documentCount Number
- Total test documents in the label.
- Number
- Mean average precision under different thresholds
GetModelsModelCollectionItemMetricOverallMetricsReportConfidenceEntry          
GetModelsModelCollectionItemTestingDataset      
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- datasetType string
- The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- dataset_type str
- The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelsModelCollectionItemTrainingDataset      
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- datasetType string
- The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- dataset_type str
- The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelsModelCollectionItemValidationDataset      
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- DatasetType string
- The dataset type, based on where it is stored.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- datasetType string
- The dataset type, based on where it is stored.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- dataset_type str
- The dataset type, based on where it is stored.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- datasetType String
- The dataset type, based on where it is stored.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.