oci.AiDocument.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Document service.
Create a new model.
Updates the model metadata only selected path parameter.
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);@overload
def Model(resource_name: str,
          args: ModelArgs,
          opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
          opts: Optional[ResourceOptions] = None,
          compartment_id: Optional[str] = None,
          project_id: Optional[str] = None,
          model_type: Optional[str] = None,
          description: Optional[str] = None,
          display_name: Optional[str] = None,
          freeform_tags: Optional[Mapping[str, str]] = None,
          is_quick_mode: Optional[bool] = None,
          max_training_time_in_hours: Optional[float] = None,
          model_id: Optional[str] = None,
          defined_tags: Optional[Mapping[str, str]] = None,
          model_version: Optional[str] = None,
          component_models: Optional[Sequence[ModelComponentModelArgs]] = None,
          testing_dataset: Optional[ModelTestingDatasetArgs] = None,
          training_dataset: Optional[ModelTrainingDatasetArgs] = None,
          validation_dataset: Optional[ModelValidationDatasetArgs] = None)func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)type: oci:AiDocument:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var ociModelResource = new Oci.AiDocument.Model("ociModelResource", new()
{
    CompartmentId = "string",
    ProjectId = "string",
    ModelType = "string",
    Description = "string",
    DisplayName = "string",
    FreeformTags = 
    {
        { "string", "string" },
    },
    IsQuickMode = false,
    MaxTrainingTimeInHours = 0,
    ModelId = "string",
    DefinedTags = 
    {
        { "string", "string" },
    },
    ModelVersion = "string",
    ComponentModels = new[]
    {
        new Oci.AiDocument.Inputs.ModelComponentModelArgs
        {
            ModelId = "string",
        },
    },
    TestingDataset = new Oci.AiDocument.Inputs.ModelTestingDatasetArgs
    {
        DatasetType = "string",
        Bucket = "string",
        DatasetId = "string",
        Namespace = "string",
        Object = "string",
    },
    TrainingDataset = new Oci.AiDocument.Inputs.ModelTrainingDatasetArgs
    {
        DatasetType = "string",
        Bucket = "string",
        DatasetId = "string",
        Namespace = "string",
        Object = "string",
    },
    ValidationDataset = new Oci.AiDocument.Inputs.ModelValidationDatasetArgs
    {
        DatasetType = "string",
        Bucket = "string",
        DatasetId = "string",
        Namespace = "string",
        Object = "string",
    },
});
example, err := aidocument.NewModel(ctx, "ociModelResource", &aidocument.ModelArgs{
	CompartmentId: pulumi.String("string"),
	ProjectId:     pulumi.String("string"),
	ModelType:     pulumi.String("string"),
	Description:   pulumi.String("string"),
	DisplayName:   pulumi.String("string"),
	FreeformTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	IsQuickMode:            pulumi.Bool(false),
	MaxTrainingTimeInHours: pulumi.Float64(0),
	ModelId:                pulumi.String("string"),
	DefinedTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	ModelVersion: pulumi.String("string"),
	ComponentModels: aidocument.ModelComponentModelArray{
		&aidocument.ModelComponentModelArgs{
			ModelId: pulumi.String("string"),
		},
	},
	TestingDataset: &aidocument.ModelTestingDatasetArgs{
		DatasetType: pulumi.String("string"),
		Bucket:      pulumi.String("string"),
		DatasetId:   pulumi.String("string"),
		Namespace:   pulumi.String("string"),
		Object:      pulumi.String("string"),
	},
	TrainingDataset: &aidocument.ModelTrainingDatasetArgs{
		DatasetType: pulumi.String("string"),
		Bucket:      pulumi.String("string"),
		DatasetId:   pulumi.String("string"),
		Namespace:   pulumi.String("string"),
		Object:      pulumi.String("string"),
	},
	ValidationDataset: &aidocument.ModelValidationDatasetArgs{
		DatasetType: pulumi.String("string"),
		Bucket:      pulumi.String("string"),
		DatasetId:   pulumi.String("string"),
		Namespace:   pulumi.String("string"),
		Object:      pulumi.String("string"),
	},
})
var ociModelResource = new com.pulumi.oci.AiDocument.Model("ociModelResource", com.pulumi.oci.AiDocument.ModelArgs.builder()
    .compartmentId("string")
    .projectId("string")
    .modelType("string")
    .description("string")
    .displayName("string")
    .freeformTags(Map.of("string", "string"))
    .isQuickMode(false)
    .maxTrainingTimeInHours(0.0)
    .modelId("string")
    .definedTags(Map.of("string", "string"))
    .modelVersion("string")
    .componentModels(ModelComponentModelArgs.builder()
        .modelId("string")
        .build())
    .testingDataset(ModelTestingDatasetArgs.builder()
        .datasetType("string")
        .bucket("string")
        .datasetId("string")
        .namespace("string")
        .object("string")
        .build())
    .trainingDataset(ModelTrainingDatasetArgs.builder()
        .datasetType("string")
        .bucket("string")
        .datasetId("string")
        .namespace("string")
        .object("string")
        .build())
    .validationDataset(ModelValidationDatasetArgs.builder()
        .datasetType("string")
        .bucket("string")
        .datasetId("string")
        .namespace("string")
        .object("string")
        .build())
    .build());
oci_model_resource = oci.ai_document.Model("ociModelResource",
    compartment_id="string",
    project_id="string",
    model_type="string",
    description="string",
    display_name="string",
    freeform_tags={
        "string": "string",
    },
    is_quick_mode=False,
    max_training_time_in_hours=0,
    model_id="string",
    defined_tags={
        "string": "string",
    },
    model_version="string",
    component_models=[{
        "model_id": "string",
    }],
    testing_dataset={
        "dataset_type": "string",
        "bucket": "string",
        "dataset_id": "string",
        "namespace": "string",
        "object": "string",
    },
    training_dataset={
        "dataset_type": "string",
        "bucket": "string",
        "dataset_id": "string",
        "namespace": "string",
        "object": "string",
    },
    validation_dataset={
        "dataset_type": "string",
        "bucket": "string",
        "dataset_id": "string",
        "namespace": "string",
        "object": "string",
    })
const ociModelResource = new oci.aidocument.Model("ociModelResource", {
    compartmentId: "string",
    projectId: "string",
    modelType: "string",
    description: "string",
    displayName: "string",
    freeformTags: {
        string: "string",
    },
    isQuickMode: false,
    maxTrainingTimeInHours: 0,
    modelId: "string",
    definedTags: {
        string: "string",
    },
    modelVersion: "string",
    componentModels: [{
        modelId: "string",
    }],
    testingDataset: {
        datasetType: "string",
        bucket: "string",
        datasetId: "string",
        namespace: "string",
        object: "string",
    },
    trainingDataset: {
        datasetType: "string",
        bucket: "string",
        datasetId: "string",
        namespace: "string",
        object: "string",
    },
    validationDataset: {
        datasetType: "string",
        bucket: "string",
        datasetId: "string",
        namespace: "string",
        object: "string",
    },
});
type: oci:AiDocument:Model
properties:
    compartmentId: string
    componentModels:
        - modelId: string
    definedTags:
        string: string
    description: string
    displayName: string
    freeformTags:
        string: string
    isQuickMode: false
    maxTrainingTimeInHours: 0
    modelId: string
    modelType: string
    modelVersion: string
    projectId: string
    testingDataset:
        bucket: string
        datasetId: string
        datasetType: string
        namespace: string
        object: string
    trainingDataset:
        bucket: string
        datasetId: string
        datasetType: string
        namespace: string
        object: string
    validationDataset:
        bucket: string
        datasetId: string
        datasetType: string
        namespace: string
        object: string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Model resource accepts the following input properties:
- CompartmentId string
- (Updatable) The compartment identifier.
- ModelType string
- The type of the Document model.
- ProjectId string
- The OCID of the project that contains the model.
- ComponentModels List<ModelComponent Model> 
- The OCID list of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- DisplayName string
- (Updatable) A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- MaxTraining doubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- ModelId string
- ModelVersion string
- The model version
- TestingDataset ModelTesting Dataset 
- The base entity which is the input for creating and training a model.
- TrainingDataset ModelTraining Dataset 
- The base entity which is the input for creating and training a model.
- ValidationDataset ModelValidation Dataset 
- The base entity which is the input for creating and training a model.
- CompartmentId string
- (Updatable) The compartment identifier.
- ModelType string
- The type of the Document model.
- ProjectId string
- The OCID of the project that contains the model.
- ComponentModels []ModelComponent Model Args 
- The OCID list of active custom Key Value models that need to be composed.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- DisplayName string
- (Updatable) A human-friendly name for the model, which can be changed.
- map[string]string
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- MaxTraining float64Time In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- ModelId string
- ModelVersion string
- The model version
- TestingDataset ModelTesting Dataset Args 
- The base entity which is the input for creating and training a model.
- TrainingDataset ModelTraining Dataset Args 
- The base entity which is the input for creating and training a model.
- ValidationDataset ModelValidation Dataset Args 
- The base entity which is the input for creating and training a model.
- compartmentId String
- (Updatable) The compartment identifier.
- modelType String
- The type of the Document model.
- projectId String
- The OCID of the project that contains the model.
- componentModels List<ModelComponent Model> 
- The OCID list of active custom Key Value models that need to be composed.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- displayName String
- (Updatable) A human-friendly name for the model, which can be changed.
- Map<String,String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- maxTraining DoubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- modelId String
- modelVersion String
- The model version
- testingDataset ModelTesting Dataset 
- The base entity which is the input for creating and training a model.
- trainingDataset ModelTraining Dataset 
- The base entity which is the input for creating and training a model.
- validationDataset ModelValidation Dataset 
- The base entity which is the input for creating and training a model.
- compartmentId string
- (Updatable) The compartment identifier.
- modelType string
- The type of the Document model.
- projectId string
- The OCID of the project that contains the model.
- componentModels ModelComponent Model[] 
- The OCID list of active custom Key Value models that need to be composed.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description string
- (Updatable) An optional description of the model.
- displayName string
- (Updatable) A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- isQuick booleanMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- maxTraining numberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- modelId string
- modelVersion string
- The model version
- testingDataset ModelTesting Dataset 
- The base entity which is the input for creating and training a model.
- trainingDataset ModelTraining Dataset 
- The base entity which is the input for creating and training a model.
- validationDataset ModelValidation Dataset 
- The base entity which is the input for creating and training a model.
- compartment_id str
- (Updatable) The compartment identifier.
- model_type str
- The type of the Document model.
- project_id str
- The OCID of the project that contains the model.
- component_models Sequence[ModelComponent Model Args] 
- The OCID list of active custom Key Value models that need to be composed.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description str
- (Updatable) An optional description of the model.
- display_name str
- (Updatable) A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- is_quick_ boolmode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- max_training_ floattime_ in_ hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- model_id str
- model_version str
- The model version
- testing_dataset ModelTesting Dataset Args 
- The base entity which is the input for creating and training a model.
- training_dataset ModelTraining Dataset Args 
- The base entity which is the input for creating and training a model.
- validation_dataset ModelValidation Dataset Args 
- The base entity which is the input for creating and training a model.
- compartmentId String
- (Updatable) The compartment identifier.
- modelType String
- The type of the Document model.
- projectId String
- The OCID of the project that contains the model.
- componentModels List<Property Map>
- The OCID list of active custom Key Value models that need to be composed.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- displayName String
- (Updatable) A human-friendly name for the model, which can be changed.
- Map<String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- maxTraining NumberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- modelId String
- modelVersion String
- The model version
- testingDataset Property Map
- The base entity which is the input for creating and training a model.
- trainingDataset Property Map
- The base entity which is the input for creating and training a model.
- validationDataset Property Map
- The base entity which is the input for creating and training a model.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- Labels List<string>
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- Metrics
List<ModelMetric> 
- Trained Model Metrics.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime doubleIn Hours 
- The total hours actually used for model training.
- Id string
- The provider-assigned unique ID for this managed resource.
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- Labels []string
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- Metrics
[]ModelMetric 
- Trained Model Metrics.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime float64In Hours 
- The total hours actually used for model training.
- id String
- The provider-assigned unique ID for this managed resource.
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics
List<ModelMetric> 
- Trained Model Metrics.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime DoubleIn Hours 
- The total hours actually used for model training.
- id string
- The provider-assigned unique ID for this managed resource.
- isComposed booleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics
ModelMetric[] 
- Trained Model Metrics.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId string
- The tenancy id of the model.
- timeCreated string
- When the model was created, as an RFC3339 datetime string.
- timeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- trainedTime numberIn Hours 
- The total hours actually used for model training.
- id str
- The provider-assigned unique ID for this managed resource.
- is_composed_ boolmodel 
- Set to true when the model is created by using multiple key value extraction models.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_details str
- A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics
Sequence[ModelMetric] 
- Trained Model Metrics.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_id str
- The tenancy id of the model.
- time_created str
- When the model was created, as an RFC3339 datetime string.
- time_updated str
- When the model was updated, as an RFC3339 datetime string.
- trained_time_ floatin_ hours 
- The total hours actually used for model training.
- id String
- The provider-assigned unique ID for this managed resource.
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- metrics List<Property Map>
- Trained Model Metrics.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime NumberIn Hours 
- The total hours actually used for model training.
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        compartment_id: Optional[str] = None,
        component_models: Optional[Sequence[ModelComponentModelArgs]] = None,
        defined_tags: Optional[Mapping[str, str]] = None,
        description: Optional[str] = None,
        display_name: Optional[str] = None,
        freeform_tags: Optional[Mapping[str, str]] = None,
        is_composed_model: Optional[bool] = None,
        is_quick_mode: Optional[bool] = None,
        labels: Optional[Sequence[str]] = None,
        lifecycle_details: Optional[str] = None,
        max_training_time_in_hours: Optional[float] = None,
        metrics: Optional[Sequence[ModelMetricArgs]] = None,
        model_id: Optional[str] = None,
        model_type: Optional[str] = None,
        model_version: Optional[str] = None,
        project_id: Optional[str] = None,
        state: Optional[str] = None,
        system_tags: Optional[Mapping[str, str]] = None,
        tenancy_id: Optional[str] = None,
        testing_dataset: Optional[ModelTestingDatasetArgs] = None,
        time_created: Optional[str] = None,
        time_updated: Optional[str] = None,
        trained_time_in_hours: Optional[float] = None,
        training_dataset: Optional[ModelTrainingDatasetArgs] = None,
        validation_dataset: Optional[ModelValidationDatasetArgs] = None) -> Modelfunc GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)resources:  _:    type: oci:AiDocument:Model    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- CompartmentId string
- (Updatable) The compartment identifier.
- ComponentModels List<ModelComponent Model> 
- The OCID list of active custom Key Value models that need to be composed.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- DisplayName string
- (Updatable) A human-friendly name for the model, which can be changed.
- Dictionary<string, string>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Labels List<string>
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- MaxTraining doubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
List<ModelMetric> 
- Trained Model Metrics.
- ModelId string
- ModelType string
- The type of the Document model.
- ModelVersion string
- The model version
- ProjectId string
- The OCID of the project that contains the model.
- State string
- The current state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TestingDataset ModelTesting Dataset 
- The base entity which is the input for creating and training a model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime doubleIn Hours 
- The total hours actually used for model training.
- TrainingDataset ModelTraining Dataset 
- The base entity which is the input for creating and training a model.
- ValidationDataset ModelValidation Dataset 
- The base entity which is the input for creating and training a model.
- CompartmentId string
- (Updatable) The compartment identifier.
- ComponentModels []ModelComponent Model Args 
- The OCID list of active custom Key Value models that need to be composed.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- Description string
- (Updatable) An optional description of the model.
- DisplayName string
- (Updatable) A human-friendly name for the model, which can be changed.
- map[string]string
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- IsComposed boolModel 
- Set to true when the model is created by using multiple key value extraction models.
- IsQuick boolMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- Labels []string
- The collection of labels used to train the custom model.
- LifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- MaxTraining float64Time In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- Metrics
[]ModelMetric Args 
- Trained Model Metrics.
- ModelId string
- ModelType string
- The type of the Document model.
- ModelVersion string
- The model version
- ProjectId string
- The OCID of the project that contains the model.
- State string
- The current state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- TenancyId string
- The tenancy id of the model.
- TestingDataset ModelTesting Dataset Args 
- The base entity which is the input for creating and training a model.
- TimeCreated string
- When the model was created, as an RFC3339 datetime string.
- TimeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- TrainedTime float64In Hours 
- The total hours actually used for model training.
- TrainingDataset ModelTraining Dataset Args 
- The base entity which is the input for creating and training a model.
- ValidationDataset ModelValidation Dataset Args 
- The base entity which is the input for creating and training a model.
- compartmentId String
- (Updatable) The compartment identifier.
- componentModels List<ModelComponent Model> 
- The OCID list of active custom Key Value models that need to be composed.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- displayName String
- (Updatable) A human-friendly name for the model, which can be changed.
- Map<String,String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining DoubleTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
List<ModelMetric> 
- Trained Model Metrics.
- modelId String
- modelType String
- The type of the Document model.
- modelVersion String
- The model version
- projectId String
- The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- testingDataset ModelTesting Dataset 
- The base entity which is the input for creating and training a model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime DoubleIn Hours 
- The total hours actually used for model training.
- trainingDataset ModelTraining Dataset 
- The base entity which is the input for creating and training a model.
- validationDataset ModelValidation Dataset 
- The base entity which is the input for creating and training a model.
- compartmentId string
- (Updatable) The compartment identifier.
- componentModels ModelComponent Model[] 
- The OCID list of active custom Key Value models that need to be composed.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description string
- (Updatable) An optional description of the model.
- displayName string
- (Updatable) A human-friendly name for the model, which can be changed.
- {[key: string]: string}
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- isComposed booleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick booleanMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels string[]
- The collection of labels used to train the custom model.
- lifecycleDetails string
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining numberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
ModelMetric[] 
- Trained Model Metrics.
- modelId string
- modelType string
- The type of the Document model.
- modelVersion string
- The model version
- projectId string
- The OCID of the project that contains the model.
- state string
- The current state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId string
- The tenancy id of the model.
- testingDataset ModelTesting Dataset 
- The base entity which is the input for creating and training a model.
- timeCreated string
- When the model was created, as an RFC3339 datetime string.
- timeUpdated string
- When the model was updated, as an RFC3339 datetime string.
- trainedTime numberIn Hours 
- The total hours actually used for model training.
- trainingDataset ModelTraining Dataset 
- The base entity which is the input for creating and training a model.
- validationDataset ModelValidation Dataset 
- The base entity which is the input for creating and training a model.
- compartment_id str
- (Updatable) The compartment identifier.
- component_models Sequence[ModelComponent Model Args] 
- The OCID list of active custom Key Value models that need to be composed.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description str
- (Updatable) An optional description of the model.
- display_name str
- (Updatable) A human-friendly name for the model, which can be changed.
- Mapping[str, str]
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- is_composed_ boolmodel 
- Set to true when the model is created by using multiple key value extraction models.
- is_quick_ boolmode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels Sequence[str]
- The collection of labels used to train the custom model.
- lifecycle_details str
- A message describing the current state in more detail, that can provide actionable information if training failed.
- max_training_ floattime_ in_ hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics
Sequence[ModelMetric Args] 
- Trained Model Metrics.
- model_id str
- model_type str
- The type of the Document model.
- model_version str
- The model version
- project_id str
- The OCID of the project that contains the model.
- state str
- The current state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancy_id str
- The tenancy id of the model.
- testing_dataset ModelTesting Dataset Args 
- The base entity which is the input for creating and training a model.
- time_created str
- When the model was created, as an RFC3339 datetime string.
- time_updated str
- When the model was updated, as an RFC3339 datetime string.
- trained_time_ floatin_ hours 
- The total hours actually used for model training.
- training_dataset ModelTraining Dataset Args 
- The base entity which is the input for creating and training a model.
- validation_dataset ModelValidation Dataset Args 
- The base entity which is the input for creating and training a model.
- compartmentId String
- (Updatable) The compartment identifier.
- componentModels List<Property Map>
- The OCID list of active custom Key Value models that need to be composed.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. For example: {"foo-namespace": {"bar-key": "value"}}
- description String
- (Updatable) An optional description of the model.
- displayName String
- (Updatable) A human-friendly name for the model, which can be changed.
- Map<String>
- (Updatable) A simple key-value pair that is applied without any predefined name, type, or scope. It exists for cross-compatibility only. For example: {"bar-key": "value"}
- isComposed BooleanModel 
- Set to true when the model is created by using multiple key value extraction models.
- isQuick BooleanMode 
- Set to true when experimenting with a new model type or dataset, so the model training is quick, with a predefined low number of passes through the training data.
- labels List<String>
- The collection of labels used to train the custom model.
- lifecycleDetails String
- A message describing the current state in more detail, that can provide actionable information if training failed.
- maxTraining NumberTime In Hours 
- The maximum model training time in hours, expressed as a decimal fraction.
- metrics List<Property Map>
- Trained Model Metrics.
- modelId String
- modelType String
- The type of the Document model.
- modelVersion String
- The model version
- projectId String
- The OCID of the project that contains the model.
- state String
- The current state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. For example: {"orcl-cloud": {"free-tier-retained": "true"}}
- tenancyId String
- The tenancy id of the model.
- testingDataset Property Map
- The base entity which is the input for creating and training a model.
- timeCreated String
- When the model was created, as an RFC3339 datetime string.
- timeUpdated String
- When the model was updated, as an RFC3339 datetime string.
- trainedTime NumberIn Hours 
- The total hours actually used for model training.
- trainingDataset Property Map
- The base entity which is the input for creating and training a model.
- validationDataset Property Map
- The base entity which is the input for creating and training a model.
Supporting Types
ModelComponentModel, ModelComponentModelArgs      
ModelMetric, ModelMetricArgs    
- DatasetSummaries List<ModelMetric Dataset Summary> 
- Summary of count of samples used during model training.
- LabelMetrics List<ModelReports Metric Label Metrics Report> 
- List of metrics entries per label.
- ModelType string
- The type of the Document model.
- OverallMetrics List<ModelReports Metric Overall Metrics Report> 
- Overall Metrics report for Document Classification Model.
- DatasetSummaries []ModelMetric Dataset Summary 
- Summary of count of samples used during model training.
- LabelMetrics []ModelReports Metric Label Metrics Report 
- List of metrics entries per label.
- ModelType string
- The type of the Document model.
- OverallMetrics []ModelReports Metric Overall Metrics Report 
- Overall Metrics report for Document Classification Model.
- datasetSummaries List<ModelMetric Dataset Summary> 
- Summary of count of samples used during model training.
- labelMetrics List<ModelReports Metric Label Metrics Report> 
- List of metrics entries per label.
- modelType String
- The type of the Document model.
- overallMetrics List<ModelReports Metric Overall Metrics Report> 
- Overall Metrics report for Document Classification Model.
- datasetSummaries ModelMetric Dataset Summary[] 
- Summary of count of samples used during model training.
- labelMetrics ModelReports Metric Label Metrics Report[] 
- List of metrics entries per label.
- modelType string
- The type of the Document model.
- overallMetrics ModelReports Metric Overall Metrics Report[] 
- Overall Metrics report for Document Classification Model.
- dataset_summaries Sequence[ModelMetric Dataset Summary] 
- Summary of count of samples used during model training.
- label_metrics_ Sequence[Modelreports Metric Label Metrics Report] 
- List of metrics entries per label.
- model_type str
- The type of the Document model.
- overall_metrics_ Sequence[Modelreports Metric Overall Metrics Report] 
- Overall Metrics report for Document Classification Model.
- datasetSummaries List<Property Map>
- Summary of count of samples used during model training.
- labelMetrics List<Property Map>Reports 
- List of metrics entries per label.
- modelType String
- The type of the Document model.
- overallMetrics List<Property Map>Reports 
- Overall Metrics report for Document Classification Model.
ModelMetricDatasetSummary, ModelMetricDatasetSummaryArgs        
- TestSample intCount 
- Number of samples used for testing the model.
- TrainingSample intCount 
- Number of samples used for training the model.
- ValidationSample intCount 
- Number of samples used for validating the model.
- TestSample intCount 
- Number of samples used for testing the model.
- TrainingSample intCount 
- Number of samples used for training the model.
- ValidationSample intCount 
- Number of samples used for validating the model.
- testSample IntegerCount 
- Number of samples used for testing the model.
- trainingSample IntegerCount 
- Number of samples used for training the model.
- validationSample IntegerCount 
- Number of samples used for validating the model.
- testSample numberCount 
- Number of samples used for testing the model.
- trainingSample numberCount 
- Number of samples used for training the model.
- validationSample numberCount 
- Number of samples used for validating the model.
- test_sample_ intcount 
- Number of samples used for testing the model.
- training_sample_ intcount 
- Number of samples used for training the model.
- validation_sample_ intcount 
- Number of samples used for validating the model.
- testSample NumberCount 
- Number of samples used for testing the model.
- trainingSample NumberCount 
- Number of samples used for training the model.
- validationSample NumberCount 
- Number of samples used for validating the model.
ModelMetricLabelMetricsReport, ModelMetricLabelMetricsReportArgs          
- ConfidenceEntries List<ModelMetric Label Metrics Report Confidence Entry> 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- Label string
- Label name
- double
- Mean average precision under different thresholds
- ConfidenceEntries []ModelMetric Label Metrics Report Confidence Entry 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- Label string
- Label name
- float64
- Mean average precision under different thresholds
- confidenceEntries List<ModelMetric Label Metrics Report Confidence Entry> 
- List of document classification confidence report.
- documentCount Integer
- Total test documents in the label.
- label String
- Label name
- Double
- Mean average precision under different thresholds
- confidenceEntries ModelMetric Label Metrics Report Confidence Entry[] 
- List of document classification confidence report.
- documentCount number
- Total test documents in the label.
- label string
- Label name
- number
- Mean average precision under different thresholds
- confidence_entries Sequence[ModelMetric Label Metrics Report Confidence Entry] 
- List of document classification confidence report.
- document_count int
- Total test documents in the label.
- label str
- Label name
- mean_average_ floatprecision 
- Mean average precision under different thresholds
- confidenceEntries List<Property Map>
- List of document classification confidence report.
- documentCount Number
- Total test documents in the label.
- label String
- Label name
- Number
- Mean average precision under different thresholds
ModelMetricLabelMetricsReportConfidenceEntry, ModelMetricLabelMetricsReportConfidenceEntryArgs              
ModelMetricOverallMetricsReport, ModelMetricOverallMetricsReportArgs          
- ConfidenceEntries List<ModelMetric Overall Metrics Report Confidence Entry> 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- double
- Mean average precision under different thresholds
- ConfidenceEntries []ModelMetric Overall Metrics Report Confidence Entry 
- List of document classification confidence report.
- DocumentCount int
- Total test documents in the label.
- float64
- Mean average precision under different thresholds
- confidenceEntries List<ModelMetric Overall Metrics Report Confidence Entry> 
- List of document classification confidence report.
- documentCount Integer
- Total test documents in the label.
- Double
- Mean average precision under different thresholds
- confidenceEntries ModelMetric Overall Metrics Report Confidence Entry[] 
- List of document classification confidence report.
- documentCount number
- Total test documents in the label.
- number
- Mean average precision under different thresholds
- confidence_entries Sequence[ModelMetric Overall Metrics Report Confidence Entry] 
- List of document classification confidence report.
- document_count int
- Total test documents in the label.
- mean_average_ floatprecision 
- Mean average precision under different thresholds
- confidenceEntries List<Property Map>
- List of document classification confidence report.
- documentCount Number
- Total test documents in the label.
- Number
- Mean average precision under different thresholds
ModelMetricOverallMetricsReportConfidenceEntry, ModelMetricOverallMetricsReportConfidenceEntryArgs              
ModelTestingDataset, ModelTestingDatasetArgs      
- DatasetType string
- The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- DatasetType string
- The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- datasetType String
- The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- datasetType string
- The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- dataset_type str
- The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- datasetType String
- The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
ModelTrainingDataset, ModelTrainingDatasetArgs      
- DatasetType string
- The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- DatasetType string
- The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- datasetType String
- The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
- datasetType string
- The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file.
- dataset_type str
- The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file.
- datasetType String
- The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file.
ModelValidationDataset, ModelValidationDatasetArgs      
- DatasetType string
- The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- DatasetType string
- The dataset type, based on where it is stored.
- Bucket string
- The name of the Object Storage bucket that contains the input data file.
- DatasetId string
- OCID of the Data Labeling dataset.
- Namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- Object string
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- datasetType String
- The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- datasetType string
- The dataset type, based on where it is stored.
- bucket string
- The name of the Object Storage bucket that contains the input data file.
- datasetId string
- OCID of the Data Labeling dataset.
- namespace string
- The namespace name of the Object Storage bucket that contains the input data file.
- object string
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- dataset_type str
- The dataset type, based on where it is stored.
- bucket str
- The name of the Object Storage bucket that contains the input data file.
- dataset_id str
- OCID of the Data Labeling dataset.
- namespace str
- The namespace name of the Object Storage bucket that contains the input data file.
- object str
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- datasetType String
- The dataset type, based on where it is stored.
- bucket String
- The name of the Object Storage bucket that contains the input data file.
- datasetId String
- OCID of the Data Labeling dataset.
- namespace String
- The namespace name of the Object Storage bucket that contains the input data file.
- object String
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
Import
Models can be imported using the id, e.g.
$ pulumi import oci:AiDocument/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.