oci.AiLanguage.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Language service.
Creates a new model for training and train the model with date provided.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = new oci.ailanguage.Model("test_model", {
    compartmentId: compartmentId,
    modelDetails: {
        modelType: modelModelDetailsModelType,
        classificationMode: {
            classificationMode: modelModelDetailsClassificationModeClassificationMode,
            version: modelModelDetailsClassificationModeVersion,
        },
        languageCode: modelModelDetailsLanguageCode,
        version: modelModelDetailsVersion,
    },
    projectId: testProject.id,
    definedTags: {
        "foo-namespace.bar-key": "value",
    },
    description: modelDescription,
    displayName: modelDisplayName,
    freeformTags: {
        "bar-key": "value",
    },
    testStrategy: {
        strategyType: modelTestStrategyStrategyType,
        testingDataset: {
            datasetType: modelTestStrategyTestingDatasetDatasetType,
            datasetId: testDataset.id,
            locationDetails: {
                bucket: modelTestStrategyTestingDatasetLocationDetailsBucket,
                locationType: modelTestStrategyTestingDatasetLocationDetailsLocationType,
                namespace: modelTestStrategyTestingDatasetLocationDetailsNamespace,
                objectNames: modelTestStrategyTestingDatasetLocationDetailsObjectNames,
            },
        },
        validationDataset: {
            datasetType: modelTestStrategyValidationDatasetDatasetType,
            datasetId: testDataset.id,
            locationDetails: {
                bucket: modelTestStrategyValidationDatasetLocationDetailsBucket,
                locationType: modelTestStrategyValidationDatasetLocationDetailsLocationType,
                namespace: modelTestStrategyValidationDatasetLocationDetailsNamespace,
                objectNames: modelTestStrategyValidationDatasetLocationDetailsObjectNames,
            },
        },
    },
    trainingDataset: {
        datasetType: modelTrainingDatasetDatasetType,
        datasetId: testDataset.id,
        locationDetails: {
            bucket: modelTrainingDatasetLocationDetailsBucket,
            locationType: modelTrainingDatasetLocationDetailsLocationType,
            namespace: modelTrainingDatasetLocationDetailsNamespace,
            objectNames: modelTrainingDatasetLocationDetailsObjectNames,
        },
    },
});
import pulumi
import pulumi_oci as oci
test_model = oci.ai_language.Model("test_model",
    compartment_id=compartment_id,
    model_details={
        "model_type": model_model_details_model_type,
        "classification_mode": {
            "classification_mode": model_model_details_classification_mode_classification_mode,
            "version": model_model_details_classification_mode_version,
        },
        "language_code": model_model_details_language_code,
        "version": model_model_details_version,
    },
    project_id=test_project["id"],
    defined_tags={
        "foo-namespace.bar-key": "value",
    },
    description=model_description,
    display_name=model_display_name,
    freeform_tags={
        "bar-key": "value",
    },
    test_strategy={
        "strategy_type": model_test_strategy_strategy_type,
        "testing_dataset": {
            "dataset_type": model_test_strategy_testing_dataset_dataset_type,
            "dataset_id": test_dataset["id"],
            "location_details": {
                "bucket": model_test_strategy_testing_dataset_location_details_bucket,
                "location_type": model_test_strategy_testing_dataset_location_details_location_type,
                "namespace": model_test_strategy_testing_dataset_location_details_namespace,
                "object_names": model_test_strategy_testing_dataset_location_details_object_names,
            },
        },
        "validation_dataset": {
            "dataset_type": model_test_strategy_validation_dataset_dataset_type,
            "dataset_id": test_dataset["id"],
            "location_details": {
                "bucket": model_test_strategy_validation_dataset_location_details_bucket,
                "location_type": model_test_strategy_validation_dataset_location_details_location_type,
                "namespace": model_test_strategy_validation_dataset_location_details_namespace,
                "object_names": model_test_strategy_validation_dataset_location_details_object_names,
            },
        },
    },
    training_dataset={
        "dataset_type": model_training_dataset_dataset_type,
        "dataset_id": test_dataset["id"],
        "location_details": {
            "bucket": model_training_dataset_location_details_bucket,
            "location_type": model_training_dataset_location_details_location_type,
            "namespace": model_training_dataset_location_details_namespace,
            "object_names": model_training_dataset_location_details_object_names,
        },
    })
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/ailanguage"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := ailanguage.NewModel(ctx, "test_model", &ailanguage.ModelArgs{
			CompartmentId: pulumi.Any(compartmentId),
			ModelDetails: &ailanguage.ModelModelDetailsArgs{
				ModelType: pulumi.Any(modelModelDetailsModelType),
				ClassificationMode: &ailanguage.ModelModelDetailsClassificationModeArgs{
					ClassificationMode: pulumi.Any(modelModelDetailsClassificationModeClassificationMode),
					Version:            pulumi.Any(modelModelDetailsClassificationModeVersion),
				},
				LanguageCode: pulumi.Any(modelModelDetailsLanguageCode),
				Version:      pulumi.Any(modelModelDetailsVersion),
			},
			ProjectId: pulumi.Any(testProject.Id),
			DefinedTags: pulumi.StringMap{
				"foo-namespace.bar-key": pulumi.String("value"),
			},
			Description: pulumi.Any(modelDescription),
			DisplayName: pulumi.Any(modelDisplayName),
			FreeformTags: pulumi.StringMap{
				"bar-key": pulumi.String("value"),
			},
			TestStrategy: &ailanguage.ModelTestStrategyArgs{
				StrategyType: pulumi.Any(modelTestStrategyStrategyType),
				TestingDataset: &ailanguage.ModelTestStrategyTestingDatasetArgs{
					DatasetType: pulumi.Any(modelTestStrategyTestingDatasetDatasetType),
					DatasetId:   pulumi.Any(testDataset.Id),
					LocationDetails: &ailanguage.ModelTestStrategyTestingDatasetLocationDetailsArgs{
						Bucket:       pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsBucket),
						LocationType: pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsLocationType),
						Namespace:    pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsNamespace),
						ObjectNames:  pulumi.Any(modelTestStrategyTestingDatasetLocationDetailsObjectNames),
					},
				},
				ValidationDataset: &ailanguage.ModelTestStrategyValidationDatasetArgs{
					DatasetType: pulumi.Any(modelTestStrategyValidationDatasetDatasetType),
					DatasetId:   pulumi.Any(testDataset.Id),
					LocationDetails: &ailanguage.ModelTestStrategyValidationDatasetLocationDetailsArgs{
						Bucket:       pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsBucket),
						LocationType: pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsLocationType),
						Namespace:    pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsNamespace),
						ObjectNames:  pulumi.Any(modelTestStrategyValidationDatasetLocationDetailsObjectNames),
					},
				},
			},
			TrainingDataset: &ailanguage.ModelTrainingDatasetArgs{
				DatasetType: pulumi.Any(modelTrainingDatasetDatasetType),
				DatasetId:   pulumi.Any(testDataset.Id),
				LocationDetails: &ailanguage.ModelTrainingDatasetLocationDetailsArgs{
					Bucket:       pulumi.Any(modelTrainingDatasetLocationDetailsBucket),
					LocationType: pulumi.Any(modelTrainingDatasetLocationDetailsLocationType),
					Namespace:    pulumi.Any(modelTrainingDatasetLocationDetailsNamespace),
					ObjectNames:  pulumi.Any(modelTrainingDatasetLocationDetailsObjectNames),
				},
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = new Oci.AiLanguage.Model("test_model", new()
    {
        CompartmentId = compartmentId,
        ModelDetails = new Oci.AiLanguage.Inputs.ModelModelDetailsArgs
        {
            ModelType = modelModelDetailsModelType,
            ClassificationMode = new Oci.AiLanguage.Inputs.ModelModelDetailsClassificationModeArgs
            {
                ClassificationMode = modelModelDetailsClassificationModeClassificationMode,
                Version = modelModelDetailsClassificationModeVersion,
            },
            LanguageCode = modelModelDetailsLanguageCode,
            Version = modelModelDetailsVersion,
        },
        ProjectId = testProject.Id,
        DefinedTags = 
        {
            { "foo-namespace.bar-key", "value" },
        },
        Description = modelDescription,
        DisplayName = modelDisplayName,
        FreeformTags = 
        {
            { "bar-key", "value" },
        },
        TestStrategy = new Oci.AiLanguage.Inputs.ModelTestStrategyArgs
        {
            StrategyType = modelTestStrategyStrategyType,
            TestingDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetArgs
            {
                DatasetType = modelTestStrategyTestingDatasetDatasetType,
                DatasetId = testDataset.Id,
                LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetLocationDetailsArgs
                {
                    Bucket = modelTestStrategyTestingDatasetLocationDetailsBucket,
                    LocationType = modelTestStrategyTestingDatasetLocationDetailsLocationType,
                    Namespace = modelTestStrategyTestingDatasetLocationDetailsNamespace,
                    ObjectNames = modelTestStrategyTestingDatasetLocationDetailsObjectNames,
                },
            },
            ValidationDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetArgs
            {
                DatasetType = modelTestStrategyValidationDatasetDatasetType,
                DatasetId = testDataset.Id,
                LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetLocationDetailsArgs
                {
                    Bucket = modelTestStrategyValidationDatasetLocationDetailsBucket,
                    LocationType = modelTestStrategyValidationDatasetLocationDetailsLocationType,
                    Namespace = modelTestStrategyValidationDatasetLocationDetailsNamespace,
                    ObjectNames = modelTestStrategyValidationDatasetLocationDetailsObjectNames,
                },
            },
        },
        TrainingDataset = new Oci.AiLanguage.Inputs.ModelTrainingDatasetArgs
        {
            DatasetType = modelTrainingDatasetDatasetType,
            DatasetId = testDataset.Id,
            LocationDetails = new Oci.AiLanguage.Inputs.ModelTrainingDatasetLocationDetailsArgs
            {
                Bucket = modelTrainingDatasetLocationDetailsBucket,
                LocationType = modelTrainingDatasetLocationDetailsLocationType,
                Namespace = modelTrainingDatasetLocationDetailsNamespace,
                ObjectNames = modelTrainingDatasetLocationDetailsObjectNames,
            },
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiLanguage.Model;
import com.pulumi.oci.AiLanguage.ModelArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelModelDetailsArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelModelDetailsClassificationModeArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyTestingDatasetArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyTestingDatasetLocationDetailsArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyValidationDatasetArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTestStrategyValidationDatasetLocationDetailsArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTrainingDatasetArgs;
import com.pulumi.oci.AiLanguage.inputs.ModelTrainingDatasetLocationDetailsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var testModel = new Model("testModel", ModelArgs.builder()
            .compartmentId(compartmentId)
            .modelDetails(ModelModelDetailsArgs.builder()
                .modelType(modelModelDetailsModelType)
                .classificationMode(ModelModelDetailsClassificationModeArgs.builder()
                    .classificationMode(modelModelDetailsClassificationModeClassificationMode)
                    .version(modelModelDetailsClassificationModeVersion)
                    .build())
                .languageCode(modelModelDetailsLanguageCode)
                .version(modelModelDetailsVersion)
                .build())
            .projectId(testProject.id())
            .definedTags(Map.of("foo-namespace.bar-key", "value"))
            .description(modelDescription)
            .displayName(modelDisplayName)
            .freeformTags(Map.of("bar-key", "value"))
            .testStrategy(ModelTestStrategyArgs.builder()
                .strategyType(modelTestStrategyStrategyType)
                .testingDataset(ModelTestStrategyTestingDatasetArgs.builder()
                    .datasetType(modelTestStrategyTestingDatasetDatasetType)
                    .datasetId(testDataset.id())
                    .locationDetails(ModelTestStrategyTestingDatasetLocationDetailsArgs.builder()
                        .bucket(modelTestStrategyTestingDatasetLocationDetailsBucket)
                        .locationType(modelTestStrategyTestingDatasetLocationDetailsLocationType)
                        .namespace(modelTestStrategyTestingDatasetLocationDetailsNamespace)
                        .objectNames(modelTestStrategyTestingDatasetLocationDetailsObjectNames)
                        .build())
                    .build())
                .validationDataset(ModelTestStrategyValidationDatasetArgs.builder()
                    .datasetType(modelTestStrategyValidationDatasetDatasetType)
                    .datasetId(testDataset.id())
                    .locationDetails(ModelTestStrategyValidationDatasetLocationDetailsArgs.builder()
                        .bucket(modelTestStrategyValidationDatasetLocationDetailsBucket)
                        .locationType(modelTestStrategyValidationDatasetLocationDetailsLocationType)
                        .namespace(modelTestStrategyValidationDatasetLocationDetailsNamespace)
                        .objectNames(modelTestStrategyValidationDatasetLocationDetailsObjectNames)
                        .build())
                    .build())
                .build())
            .trainingDataset(ModelTrainingDatasetArgs.builder()
                .datasetType(modelTrainingDatasetDatasetType)
                .datasetId(testDataset.id())
                .locationDetails(ModelTrainingDatasetLocationDetailsArgs.builder()
                    .bucket(modelTrainingDatasetLocationDetailsBucket)
                    .locationType(modelTrainingDatasetLocationDetailsLocationType)
                    .namespace(modelTrainingDatasetLocationDetailsNamespace)
                    .objectNames(modelTrainingDatasetLocationDetailsObjectNames)
                    .build())
                .build())
            .build());
    }
}
resources:
  testModel:
    type: oci:AiLanguage:Model
    name: test_model
    properties:
      compartmentId: ${compartmentId}
      modelDetails:
        modelType: ${modelModelDetailsModelType}
        classificationMode:
          classificationMode: ${modelModelDetailsClassificationModeClassificationMode}
          version: ${modelModelDetailsClassificationModeVersion}
        languageCode: ${modelModelDetailsLanguageCode}
        version: ${modelModelDetailsVersion}
      projectId: ${testProject.id}
      definedTags:
        foo-namespace.bar-key: value
      description: ${modelDescription}
      displayName: ${modelDisplayName}
      freeformTags:
        bar-key: value
      testStrategy:
        strategyType: ${modelTestStrategyStrategyType}
        testingDataset:
          datasetType: ${modelTestStrategyTestingDatasetDatasetType}
          datasetId: ${testDataset.id}
          locationDetails:
            bucket: ${modelTestStrategyTestingDatasetLocationDetailsBucket}
            locationType: ${modelTestStrategyTestingDatasetLocationDetailsLocationType}
            namespace: ${modelTestStrategyTestingDatasetLocationDetailsNamespace}
            objectNames: ${modelTestStrategyTestingDatasetLocationDetailsObjectNames}
        validationDataset:
          datasetType: ${modelTestStrategyValidationDatasetDatasetType}
          datasetId: ${testDataset.id}
          locationDetails:
            bucket: ${modelTestStrategyValidationDatasetLocationDetailsBucket}
            locationType: ${modelTestStrategyValidationDatasetLocationDetailsLocationType}
            namespace: ${modelTestStrategyValidationDatasetLocationDetailsNamespace}
            objectNames: ${modelTestStrategyValidationDatasetLocationDetailsObjectNames}
      trainingDataset:
        datasetType: ${modelTrainingDatasetDatasetType}
        datasetId: ${testDataset.id}
        locationDetails:
          bucket: ${modelTrainingDatasetLocationDetailsBucket}
          locationType: ${modelTrainingDatasetLocationDetailsLocationType}
          namespace: ${modelTrainingDatasetLocationDetailsNamespace}
          objectNames: ${modelTrainingDatasetLocationDetailsObjectNames}
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);@overload
def Model(resource_name: str,
          args: ModelArgs,
          opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
          opts: Optional[ResourceOptions] = None,
          compartment_id: Optional[str] = None,
          model_details: Optional[ModelModelDetailsArgs] = None,
          project_id: Optional[str] = None,
          training_dataset: Optional[ModelTrainingDatasetArgs] = None,
          defined_tags: Optional[Mapping[str, str]] = None,
          description: Optional[str] = None,
          display_name: Optional[str] = None,
          freeform_tags: Optional[Mapping[str, str]] = None,
          test_strategy: Optional[ModelTestStrategyArgs] = None)func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)type: oci:AiLanguage:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplemodelResourceResourceFromAiLanguagemodel = new Oci.AiLanguage.Model("examplemodelResourceResourceFromAiLanguagemodel", new()
{
    CompartmentId = "string",
    ModelDetails = new Oci.AiLanguage.Inputs.ModelModelDetailsArgs
    {
        ModelType = "string",
        ClassificationMode = new Oci.AiLanguage.Inputs.ModelModelDetailsClassificationModeArgs
        {
            ClassificationMode = "string",
            Version = "string",
        },
        LanguageCode = "string",
        Version = "string",
    },
    ProjectId = "string",
    TrainingDataset = new Oci.AiLanguage.Inputs.ModelTrainingDatasetArgs
    {
        DatasetType = "string",
        DatasetId = "string",
        LocationDetails = new Oci.AiLanguage.Inputs.ModelTrainingDatasetLocationDetailsArgs
        {
            Bucket = "string",
            LocationType = "string",
            Namespace = "string",
            ObjectNames = new[]
            {
                "string",
            },
        },
    },
    DefinedTags = 
    {
        { "string", "string" },
    },
    Description = "string",
    DisplayName = "string",
    FreeformTags = 
    {
        { "string", "string" },
    },
    TestStrategy = new Oci.AiLanguage.Inputs.ModelTestStrategyArgs
    {
        StrategyType = "string",
        TestingDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetArgs
        {
            DatasetType = "string",
            DatasetId = "string",
            LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyTestingDatasetLocationDetailsArgs
            {
                Bucket = "string",
                LocationType = "string",
                Namespace = "string",
                ObjectNames = new[]
                {
                    "string",
                },
            },
        },
        ValidationDataset = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetArgs
        {
            DatasetType = "string",
            DatasetId = "string",
            LocationDetails = new Oci.AiLanguage.Inputs.ModelTestStrategyValidationDatasetLocationDetailsArgs
            {
                Bucket = "string",
                LocationType = "string",
                Namespace = "string",
                ObjectNames = new[]
                {
                    "string",
                },
            },
        },
    },
});
example, err := ailanguage.NewModel(ctx, "examplemodelResourceResourceFromAiLanguagemodel", &ailanguage.ModelArgs{
	CompartmentId: pulumi.String("string"),
	ModelDetails: &ailanguage.ModelModelDetailsArgs{
		ModelType: pulumi.String("string"),
		ClassificationMode: &ailanguage.ModelModelDetailsClassificationModeArgs{
			ClassificationMode: pulumi.String("string"),
			Version:            pulumi.String("string"),
		},
		LanguageCode: pulumi.String("string"),
		Version:      pulumi.String("string"),
	},
	ProjectId: pulumi.String("string"),
	TrainingDataset: &ailanguage.ModelTrainingDatasetArgs{
		DatasetType: pulumi.String("string"),
		DatasetId:   pulumi.String("string"),
		LocationDetails: &ailanguage.ModelTrainingDatasetLocationDetailsArgs{
			Bucket:       pulumi.String("string"),
			LocationType: pulumi.String("string"),
			Namespace:    pulumi.String("string"),
			ObjectNames: pulumi.StringArray{
				pulumi.String("string"),
			},
		},
	},
	DefinedTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Description: pulumi.String("string"),
	DisplayName: pulumi.String("string"),
	FreeformTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	TestStrategy: &ailanguage.ModelTestStrategyArgs{
		StrategyType: pulumi.String("string"),
		TestingDataset: &ailanguage.ModelTestStrategyTestingDatasetArgs{
			DatasetType: pulumi.String("string"),
			DatasetId:   pulumi.String("string"),
			LocationDetails: &ailanguage.ModelTestStrategyTestingDatasetLocationDetailsArgs{
				Bucket:       pulumi.String("string"),
				LocationType: pulumi.String("string"),
				Namespace:    pulumi.String("string"),
				ObjectNames: pulumi.StringArray{
					pulumi.String("string"),
				},
			},
		},
		ValidationDataset: &ailanguage.ModelTestStrategyValidationDatasetArgs{
			DatasetType: pulumi.String("string"),
			DatasetId:   pulumi.String("string"),
			LocationDetails: &ailanguage.ModelTestStrategyValidationDatasetLocationDetailsArgs{
				Bucket:       pulumi.String("string"),
				LocationType: pulumi.String("string"),
				Namespace:    pulumi.String("string"),
				ObjectNames: pulumi.StringArray{
					pulumi.String("string"),
				},
			},
		},
	},
})
var examplemodelResourceResourceFromAiLanguagemodel = new com.pulumi.oci.AiLanguage.Model("examplemodelResourceResourceFromAiLanguagemodel", com.pulumi.oci.AiLanguage.ModelArgs.builder()
    .compartmentId("string")
    .modelDetails(ModelModelDetailsArgs.builder()
        .modelType("string")
        .classificationMode(ModelModelDetailsClassificationModeArgs.builder()
            .classificationMode("string")
            .version("string")
            .build())
        .languageCode("string")
        .version("string")
        .build())
    .projectId("string")
    .trainingDataset(ModelTrainingDatasetArgs.builder()
        .datasetType("string")
        .datasetId("string")
        .locationDetails(ModelTrainingDatasetLocationDetailsArgs.builder()
            .bucket("string")
            .locationType("string")
            .namespace("string")
            .objectNames("string")
            .build())
        .build())
    .definedTags(Map.of("string", "string"))
    .description("string")
    .displayName("string")
    .freeformTags(Map.of("string", "string"))
    .testStrategy(ModelTestStrategyArgs.builder()
        .strategyType("string")
        .testingDataset(ModelTestStrategyTestingDatasetArgs.builder()
            .datasetType("string")
            .datasetId("string")
            .locationDetails(ModelTestStrategyTestingDatasetLocationDetailsArgs.builder()
                .bucket("string")
                .locationType("string")
                .namespace("string")
                .objectNames("string")
                .build())
            .build())
        .validationDataset(ModelTestStrategyValidationDatasetArgs.builder()
            .datasetType("string")
            .datasetId("string")
            .locationDetails(ModelTestStrategyValidationDatasetLocationDetailsArgs.builder()
                .bucket("string")
                .locationType("string")
                .namespace("string")
                .objectNames("string")
                .build())
            .build())
        .build())
    .build());
examplemodel_resource_resource_from_ai_languagemodel = oci.ai_language.Model("examplemodelResourceResourceFromAiLanguagemodel",
    compartment_id="string",
    model_details={
        "model_type": "string",
        "classification_mode": {
            "classification_mode": "string",
            "version": "string",
        },
        "language_code": "string",
        "version": "string",
    },
    project_id="string",
    training_dataset={
        "dataset_type": "string",
        "dataset_id": "string",
        "location_details": {
            "bucket": "string",
            "location_type": "string",
            "namespace": "string",
            "object_names": ["string"],
        },
    },
    defined_tags={
        "string": "string",
    },
    description="string",
    display_name="string",
    freeform_tags={
        "string": "string",
    },
    test_strategy={
        "strategy_type": "string",
        "testing_dataset": {
            "dataset_type": "string",
            "dataset_id": "string",
            "location_details": {
                "bucket": "string",
                "location_type": "string",
                "namespace": "string",
                "object_names": ["string"],
            },
        },
        "validation_dataset": {
            "dataset_type": "string",
            "dataset_id": "string",
            "location_details": {
                "bucket": "string",
                "location_type": "string",
                "namespace": "string",
                "object_names": ["string"],
            },
        },
    })
const examplemodelResourceResourceFromAiLanguagemodel = new oci.ailanguage.Model("examplemodelResourceResourceFromAiLanguagemodel", {
    compartmentId: "string",
    modelDetails: {
        modelType: "string",
        classificationMode: {
            classificationMode: "string",
            version: "string",
        },
        languageCode: "string",
        version: "string",
    },
    projectId: "string",
    trainingDataset: {
        datasetType: "string",
        datasetId: "string",
        locationDetails: {
            bucket: "string",
            locationType: "string",
            namespace: "string",
            objectNames: ["string"],
        },
    },
    definedTags: {
        string: "string",
    },
    description: "string",
    displayName: "string",
    freeformTags: {
        string: "string",
    },
    testStrategy: {
        strategyType: "string",
        testingDataset: {
            datasetType: "string",
            datasetId: "string",
            locationDetails: {
                bucket: "string",
                locationType: "string",
                namespace: "string",
                objectNames: ["string"],
            },
        },
        validationDataset: {
            datasetType: "string",
            datasetId: "string",
            locationDetails: {
                bucket: "string",
                locationType: "string",
                namespace: "string",
                objectNames: ["string"],
            },
        },
    },
});
type: oci:AiLanguage:Model
properties:
    compartmentId: string
    definedTags:
        string: string
    description: string
    displayName: string
    freeformTags:
        string: string
    modelDetails:
        classificationMode:
            classificationMode: string
            version: string
        languageCode: string
        modelType: string
        version: string
    projectId: string
    testStrategy:
        strategyType: string
        testingDataset:
            datasetId: string
            datasetType: string
            locationDetails:
                bucket: string
                locationType: string
                namespace: string
                objectNames:
                    - string
        validationDataset:
            datasetId: string
            datasetType: string
            locationDetails:
                bucket: string
                locationType: string
                namespace: string
                objectNames:
                    - string
    trainingDataset:
        datasetId: string
        datasetType: string
        locationDetails:
            bucket: string
            locationType: string
            namespace: string
            objectNames:
                - string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Model resource accepts the following input properties:
- CompartmentId string
- (Updatable) The OCID for the models compartment.
- ModelDetails ModelModel Details 
- Possible model types
- ProjectId string
- The OCID of the project to associate with the model.
- TrainingDataset ModelTraining Dataset 
- Possible data set type
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Dictionary<string, string>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- TestStrategy ModelTest Strategy 
- Possible strategy as testing and validation(optional) dataset.
- CompartmentId string
- (Updatable) The OCID for the models compartment.
- ModelDetails ModelModel Details Args 
- Possible model types
- ProjectId string
- The OCID of the project to associate with the model.
- TrainingDataset ModelTraining Dataset Args 
- Possible data set type
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- map[string]string
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- TestStrategy ModelTest Strategy Args 
- Possible strategy as testing and validation(optional) dataset.
- compartmentId String
- (Updatable) The OCID for the models compartment.
- modelDetails ModelModel Details 
- Possible model types
- projectId String
- The OCID of the project to associate with the model.
- trainingDataset ModelTraining Dataset 
- Possible data set type
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- displayName String
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Map<String,String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- testStrategy ModelTest Strategy 
- Possible strategy as testing and validation(optional) dataset.
- compartmentId string
- (Updatable) The OCID for the models compartment.
- modelDetails ModelModel Details 
- Possible model types
- projectId string
- The OCID of the project to associate with the model.
- trainingDataset ModelTraining Dataset 
- Possible data set type
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description string
- (Updatable) A short description of the a model.
- displayName string
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- {[key: string]: string}
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- testStrategy ModelTest Strategy 
- Possible strategy as testing and validation(optional) dataset.
- compartment_id str
- (Updatable) The OCID for the models compartment.
- model_details ModelModel Details Args 
- Possible model types
- project_id str
- The OCID of the project to associate with the model.
- training_dataset ModelTraining Dataset Args 
- Possible data set type
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description str
- (Updatable) A short description of the a model.
- display_name str
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Mapping[str, str]
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- test_strategy ModelTest Strategy Args 
- Possible strategy as testing and validation(optional) dataset.
- compartmentId String
- (Updatable) The OCID for the models compartment.
- modelDetails Property Map
- Possible model types
- projectId String
- The OCID of the project to associate with the model.
- trainingDataset Property Map
- Possible data set type
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- displayName String
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- Map<String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- testStrategy Property Map
- Possible strategy as testing and validation(optional) dataset.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- EvaluationResults List<ModelEvaluation Result> 
- model training results of different models
- Id string
- The provider-assigned unique ID for this managed resource.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- State string
- The state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TimeCreated string
- The time the the model was created. An RFC3339 formatted datetime string.
- TimeUpdated string
- The time the model was updated. An RFC3339 formatted datetime string.
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- EvaluationResults []ModelEvaluation Result 
- model training results of different models
- Id string
- The provider-assigned unique ID for this managed resource.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- State string
- The state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TimeCreated string
- The time the the model was created. An RFC3339 formatted datetime string.
- TimeUpdated string
- The time the model was updated. An RFC3339 formatted datetime string.
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluationResults List<ModelEvaluation Result> 
- model training results of different models
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state String
- The state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated String
- The time the the model was created. An RFC3339 formatted datetime string.
- timeUpdated String
- The time the model was updated. An RFC3339 formatted datetime string.
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluationResults ModelEvaluation Result[] 
- model training results of different models
- id string
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state string
- The state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated string
- The time the the model was created. An RFC3339 formatted datetime string.
- timeUpdated string
- The time the model was updated. An RFC3339 formatted datetime string.
- version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluation_results Sequence[ModelEvaluation Result] 
- model training results of different models
- id str
- The provider-assigned unique ID for this managed resource.
- lifecycle_details str
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state str
- The state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- time_created str
- The time the the model was created. An RFC3339 formatted datetime string.
- time_updated str
- The time the model was updated. An RFC3339 formatted datetime string.
- version str
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- evaluationResults List<Property Map>
- model training results of different models
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- state String
- The state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated String
- The time the the model was created. An RFC3339 formatted datetime string.
- timeUpdated String
- The time the model was updated. An RFC3339 formatted datetime string.
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        compartment_id: Optional[str] = None,
        defined_tags: Optional[Mapping[str, str]] = None,
        description: Optional[str] = None,
        display_name: Optional[str] = None,
        evaluation_results: Optional[Sequence[ModelEvaluationResultArgs]] = None,
        freeform_tags: Optional[Mapping[str, str]] = None,
        lifecycle_details: Optional[str] = None,
        model_details: Optional[ModelModelDetailsArgs] = None,
        project_id: Optional[str] = None,
        state: Optional[str] = None,
        system_tags: Optional[Mapping[str, str]] = None,
        test_strategy: Optional[ModelTestStrategyArgs] = None,
        time_created: Optional[str] = None,
        time_updated: Optional[str] = None,
        training_dataset: Optional[ModelTrainingDatasetArgs] = None,
        version: Optional[str] = None) -> Modelfunc GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)resources:  _:    type: oci:AiLanguage:Model    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- CompartmentId string
- (Updatable) The OCID for the models compartment.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- EvaluationResults List<ModelEvaluation Result> 
- model training results of different models
- Dictionary<string, string>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- ModelDetails ModelModel Details 
- Possible model types
- ProjectId string
- The OCID of the project to associate with the model.
- State string
- The state of the model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestStrategy ModelTest Strategy 
- Possible strategy as testing and validation(optional) dataset.
- TimeCreated string
- The time the the model was created. An RFC3339 formatted datetime string.
- TimeUpdated string
- The time the model was updated. An RFC3339 formatted datetime string.
- TrainingDataset ModelTraining Dataset 
- Possible data set type
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- CompartmentId string
- (Updatable) The OCID for the models compartment.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the a model.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- EvaluationResults []ModelEvaluation Result Args 
- model training results of different models
- map[string]string
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- ModelDetails ModelModel Details Args 
- Possible model types
- ProjectId string
- The OCID of the project to associate with the model.
- State string
- The state of the model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestStrategy ModelTest Strategy Args 
- Possible strategy as testing and validation(optional) dataset.
- TimeCreated string
- The time the the model was created. An RFC3339 formatted datetime string.
- TimeUpdated string
- The time the model was updated. An RFC3339 formatted datetime string.
- TrainingDataset ModelTraining Dataset Args 
- Possible data set type
- Version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartmentId String
- (Updatable) The OCID for the models compartment.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- displayName String
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluationResults List<ModelEvaluation Result> 
- model training results of different models
- Map<String,String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- modelDetails ModelModel Details 
- Possible model types
- projectId String
- The OCID of the project to associate with the model.
- state String
- The state of the model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testStrategy ModelTest Strategy 
- Possible strategy as testing and validation(optional) dataset.
- timeCreated String
- The time the the model was created. An RFC3339 formatted datetime string.
- timeUpdated String
- The time the model was updated. An RFC3339 formatted datetime string.
- trainingDataset ModelTraining Dataset 
- Possible data set type
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartmentId string
- (Updatable) The OCID for the models compartment.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description string
- (Updatable) A short description of the a model.
- displayName string
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluationResults ModelEvaluation Result[] 
- model training results of different models
- {[key: string]: string}
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- lifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- modelDetails ModelModel Details 
- Possible model types
- projectId string
- The OCID of the project to associate with the model.
- state string
- The state of the model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testStrategy ModelTest Strategy 
- Possible strategy as testing and validation(optional) dataset.
- timeCreated string
- The time the the model was created. An RFC3339 formatted datetime string.
- timeUpdated string
- The time the model was updated. An RFC3339 formatted datetime string.
- trainingDataset ModelTraining Dataset 
- Possible data set type
- version string
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartment_id str
- (Updatable) The OCID for the models compartment.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description str
- (Updatable) A short description of the a model.
- display_name str
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluation_results Sequence[ModelEvaluation Result Args] 
- model training results of different models
- Mapping[str, str]
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- lifecycle_details str
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- model_details ModelModel Details Args 
- Possible model types
- project_id str
- The OCID of the project to associate with the model.
- state str
- The state of the model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- test_strategy ModelTest Strategy Args 
- Possible strategy as testing and validation(optional) dataset.
- time_created str
- The time the the model was created. An RFC3339 formatted datetime string.
- time_updated str
- The time the model was updated. An RFC3339 formatted datetime string.
- training_dataset ModelTraining Dataset Args 
- Possible data set type
- version str
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
- compartmentId String
- (Updatable) The OCID for the models compartment.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the a model.
- displayName String
- (Updatable) A user-friendly display name for the resource. It does not have to be unique and can be modified. Avoid entering confidential information.
- evaluationResults List<Property Map>
- model training results of different models
- Map<String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in failed state.
- modelDetails Property Map
- Possible model types
- projectId String
- The OCID of the project to associate with the model.
- state String
- The state of the model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testStrategy Property Map
- Possible strategy as testing and validation(optional) dataset.
- timeCreated String
- The time the the model was created. An RFC3339 formatted datetime string.
- timeUpdated String
- The time the model was updated. An RFC3339 formatted datetime string.
- trainingDataset Property Map
- Possible data set type
- version String
- For pre trained models this will identify model type version used for model creation For custom identifying the model by model id is difficult. This param provides ease of use for end customer. <>::<>_<>::<> ex: ai-lang::NER_V1::CUSTOM-V0
Supporting Types
ModelEvaluationResult, ModelEvaluationResultArgs      
- ClassMetrics List<ModelEvaluation Result Class Metric> 
- List of text classification metrics
- ConfusionMatrix string
- class level confusion matrix
- EntityMetrics List<ModelEvaluation Result Entity Metric> 
- List of entity metrics
- Labels List<string>
- labels
- Metrics
List<ModelEvaluation Result Metric> 
- Model level named entity recognition metrics
- ModelType string
- Model type
- ClassMetrics []ModelEvaluation Result Class Metric 
- List of text classification metrics
- ConfusionMatrix string
- class level confusion matrix
- EntityMetrics []ModelEvaluation Result Entity Metric 
- List of entity metrics
- Labels []string
- labels
- Metrics
[]ModelEvaluation Result Metric 
- Model level named entity recognition metrics
- ModelType string
- Model type
- classMetrics List<ModelEvaluation Result Class Metric> 
- List of text classification metrics
- confusionMatrix String
- class level confusion matrix
- entityMetrics List<ModelEvaluation Result Entity Metric> 
- List of entity metrics
- labels List<String>
- labels
- metrics
List<ModelEvaluation Result Metric> 
- Model level named entity recognition metrics
- modelType String
- Model type
- classMetrics ModelEvaluation Result Class Metric[] 
- List of text classification metrics
- confusionMatrix string
- class level confusion matrix
- entityMetrics ModelEvaluation Result Entity Metric[] 
- List of entity metrics
- labels string[]
- labels
- metrics
ModelEvaluation Result Metric[] 
- Model level named entity recognition metrics
- modelType string
- Model type
- class_metrics Sequence[ModelEvaluation Result Class Metric] 
- List of text classification metrics
- confusion_matrix str
- class level confusion matrix
- entity_metrics Sequence[ModelEvaluation Result Entity Metric] 
- List of entity metrics
- labels Sequence[str]
- labels
- metrics
Sequence[ModelEvaluation Result Metric] 
- Model level named entity recognition metrics
- model_type str
- Model type
- classMetrics List<Property Map>
- List of text classification metrics
- confusionMatrix String
- class level confusion matrix
- entityMetrics List<Property Map>
- List of entity metrics
- labels List<String>
- labels
- metrics List<Property Map>
- Model level named entity recognition metrics
- modelType String
- Model type
ModelEvaluationResultClassMetric, ModelEvaluationResultClassMetricArgs          
- F1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Support double
- number of samples in the test set
- F1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Support float64
- number of samples in the test set
- f1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support Double
- number of samples in the test set
- f1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- label string
- Entity label
- precision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support number
- number of samples in the test set
- f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- label str
- Entity label
- precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support float
- number of samples in the test set
- f1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- support Number
- number of samples in the test set
ModelEvaluationResultEntityMetric, ModelEvaluationResultEntityMetricArgs          
- F1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- F1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- Label string
- Entity label
- Precision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- Recall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- label string
- Entity label
- precision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- label str
- Entity label
- precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- f1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- label String
- Entity label
- precision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- recall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
ModelEvaluationResultMetric, ModelEvaluationResultMetricArgs        
- Accuracy double
- The fraction of the labels that were correctly recognised .
- MacroF1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- MacroPrecision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- MacroRecall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- MicroF1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- MicroPrecision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- MicroRecall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- WeightedF1 double
- F1-score, is a measure of a model’s accuracy on a dataset
- WeightedPrecision double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- WeightedRecall double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Accuracy float64
- The fraction of the labels that were correctly recognised .
- MacroF1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- MacroPrecision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- MacroRecall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- MicroF1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- MicroPrecision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- MicroRecall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- WeightedF1 float64
- F1-score, is a measure of a model’s accuracy on a dataset
- WeightedPrecision float64
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- WeightedRecall float64
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy Double
- The fraction of the labels that were correctly recognised .
- macroF1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- macroPrecision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macroRecall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- microF1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- microPrecision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- microRecall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weightedF1 Double
- F1-score, is a measure of a model’s accuracy on a dataset
- weightedPrecision Double
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weightedRecall Double
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy number
- The fraction of the labels that were correctly recognised .
- macroF1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- macroPrecision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macroRecall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- microF1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- microPrecision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- microRecall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weightedF1 number
- F1-score, is a measure of a model’s accuracy on a dataset
- weightedPrecision number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weightedRecall number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy float
- The fraction of the labels that were correctly recognised .
- macro_f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- macro_precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macro_recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- micro_f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- micro_precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- micro_recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weighted_f1 float
- F1-score, is a measure of a model’s accuracy on a dataset
- weighted_precision float
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weighted_recall float
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- accuracy Number
- The fraction of the labels that were correctly recognised .
- macroF1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- macroPrecision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- macroRecall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- microF1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- microPrecision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- microRecall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- weightedF1 Number
- F1-score, is a measure of a model’s accuracy on a dataset
- weightedPrecision Number
- Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)
- weightedRecall Number
- Measures the model's ability to predict actual positive classes. It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
ModelModelDetails, ModelModelDetailsArgs      
- ModelType string
- Model type
- ClassificationMode ModelModel Details Classification Mode 
- possible text classification modes
- LanguageCode string
- supported language default value is en
- Version string
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- ModelType string
- Model type
- ClassificationMode ModelModel Details Classification Mode 
- possible text classification modes
- LanguageCode string
- supported language default value is en
- Version string
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- modelType String
- Model type
- classificationMode ModelModel Details Classification Mode 
- possible text classification modes
- languageCode String
- supported language default value is en
- version String
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- modelType string
- Model type
- classificationMode ModelModel Details Classification Mode 
- possible text classification modes
- languageCode string
- supported language default value is en
- version string
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- model_type str
- Model type
- classification_mode ModelModel Details Classification Mode 
- possible text classification modes
- language_code str
- supported language default value is en
- version str
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
- modelType String
- Model type
- classificationMode Property Map
- possible text classification modes
- languageCode String
- supported language default value is en
- version String
- Optional pre trained model version. if nothing specified latest pre trained model will be used. Supported versions can be found at /modelTypes/{modelType}
ModelModelDetailsClassificationMode, ModelModelDetailsClassificationModeArgs          
- ClassificationMode string
- classification Modes
- Version string
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- ClassificationMode string
- classification Modes
- Version string
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classificationMode String
- classification Modes
- version String
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classificationMode string
- classification Modes
- version string
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classification_mode str
- classification Modes
- version str
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
- classificationMode String
- classification Modes
- version String
- Optional if nothing specified latest base model will be used for training. Supported versions can be found at /modelTypes/{modelType}
ModelTestStrategy, ModelTestStrategyArgs      
- StrategyType string
- This information will define the test strategy different datasets for test and validation(optional) dataset.
- TestingDataset ModelTest Strategy Testing Dataset 
- Possible data set type
- ValidationDataset ModelTest Strategy Validation Dataset 
- Possible data set type
- StrategyType string
- This information will define the test strategy different datasets for test and validation(optional) dataset.
- TestingDataset ModelTest Strategy Testing Dataset 
- Possible data set type
- ValidationDataset ModelTest Strategy Validation Dataset 
- Possible data set type
- strategyType String
- This information will define the test strategy different datasets for test and validation(optional) dataset.
- testingDataset ModelTest Strategy Testing Dataset 
- Possible data set type
- validationDataset ModelTest Strategy Validation Dataset 
- Possible data set type
- strategyType string
- This information will define the test strategy different datasets for test and validation(optional) dataset.
- testingDataset ModelTest Strategy Testing Dataset 
- Possible data set type
- validationDataset ModelTest Strategy Validation Dataset 
- Possible data set type
- strategy_type str
- This information will define the test strategy different datasets for test and validation(optional) dataset.
- testing_dataset ModelTest Strategy Testing Dataset 
- Possible data set type
- validation_dataset ModelTest Strategy Validation Dataset 
- Possible data set type
- strategyType String
- This information will define the test strategy different datasets for test and validation(optional) dataset.
- testingDataset Property Map
- Possible data set type
- validationDataset Property Map
- Possible data set type
ModelTestStrategyTestingDataset, ModelTestStrategyTestingDatasetArgs          
- DatasetType string
- Possible data sets
- DatasetId string
- Data Science Labelling Service OCID
- LocationDetails ModelTest Strategy Testing Dataset Location Details 
- Possible object storage location types
- DatasetType string
- Possible data sets
- DatasetId string
- Data Science Labelling Service OCID
- LocationDetails ModelTest Strategy Testing Dataset Location Details 
- Possible object storage location types
- datasetType String
- Possible data sets
- datasetId String
- Data Science Labelling Service OCID
- locationDetails ModelTest Strategy Testing Dataset Location Details 
- Possible object storage location types
- datasetType string
- Possible data sets
- datasetId string
- Data Science Labelling Service OCID
- locationDetails ModelTest Strategy Testing Dataset Location Details 
- Possible object storage location types
- dataset_type str
- Possible data sets
- dataset_id str
- Data Science Labelling Service OCID
- location_details ModelTest Strategy Testing Dataset Location Details 
- Possible object storage location types
- datasetType String
- Possible data sets
- datasetId String
- Data Science Labelling Service OCID
- locationDetails Property Map
- Possible object storage location types
ModelTestStrategyTestingDatasetLocationDetails, ModelTestStrategyTestingDatasetLocationDetailsArgs              
- Bucket string
- Object storage bucket name
- LocationType string
- Possible object storage location types
- Namespace string
- Object storage namespace
- ObjectNames List<string>
- Array of files which need to be processed in the bucket
- Bucket string
- Object storage bucket name
- LocationType string
- Possible object storage location types
- Namespace string
- Object storage namespace
- ObjectNames []string
- Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- locationType String
- Possible object storage location types
- namespace String
- Object storage namespace
- objectNames List<String>
- Array of files which need to be processed in the bucket
- bucket string
- Object storage bucket name
- locationType string
- Possible object storage location types
- namespace string
- Object storage namespace
- objectNames string[]
- Array of files which need to be processed in the bucket
- bucket str
- Object storage bucket name
- location_type str
- Possible object storage location types
- namespace str
- Object storage namespace
- object_names Sequence[str]
- Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- locationType String
- Possible object storage location types
- namespace String
- Object storage namespace
- objectNames List<String>
- Array of files which need to be processed in the bucket
ModelTestStrategyValidationDataset, ModelTestStrategyValidationDatasetArgs          
- DatasetType string
- Possible data sets
- DatasetId string
- Data Science Labelling Service OCID
- LocationDetails ModelTest Strategy Validation Dataset Location Details 
- Possible object storage location types
- DatasetType string
- Possible data sets
- DatasetId string
- Data Science Labelling Service OCID
- LocationDetails ModelTest Strategy Validation Dataset Location Details 
- Possible object storage location types
- datasetType String
- Possible data sets
- datasetId String
- Data Science Labelling Service OCID
- locationDetails ModelTest Strategy Validation Dataset Location Details 
- Possible object storage location types
- datasetType string
- Possible data sets
- datasetId string
- Data Science Labelling Service OCID
- locationDetails ModelTest Strategy Validation Dataset Location Details 
- Possible object storage location types
- dataset_type str
- Possible data sets
- dataset_id str
- Data Science Labelling Service OCID
- location_details ModelTest Strategy Validation Dataset Location Details 
- Possible object storage location types
- datasetType String
- Possible data sets
- datasetId String
- Data Science Labelling Service OCID
- locationDetails Property Map
- Possible object storage location types
ModelTestStrategyValidationDatasetLocationDetails, ModelTestStrategyValidationDatasetLocationDetailsArgs              
- Bucket string
- Object storage bucket name
- LocationType string
- Possible object storage location types
- Namespace string
- Object storage namespace
- ObjectNames List<string>
- Array of files which need to be processed in the bucket
- Bucket string
- Object storage bucket name
- LocationType string
- Possible object storage location types
- Namespace string
- Object storage namespace
- ObjectNames []string
- Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- locationType String
- Possible object storage location types
- namespace String
- Object storage namespace
- objectNames List<String>
- Array of files which need to be processed in the bucket
- bucket string
- Object storage bucket name
- locationType string
- Possible object storage location types
- namespace string
- Object storage namespace
- objectNames string[]
- Array of files which need to be processed in the bucket
- bucket str
- Object storage bucket name
- location_type str
- Possible object storage location types
- namespace str
- Object storage namespace
- object_names Sequence[str]
- Array of files which need to be processed in the bucket
- bucket String
- Object storage bucket name
- locationType String
- Possible object storage location types
- namespace String
- Object storage namespace
- objectNames List<String>
- Array of files which need to be processed in the bucket
ModelTrainingDataset, ModelTrainingDatasetArgs      
- DatasetType string
- Possible data sets
- DatasetId string
- Data Science Labelling Service OCID
- LocationDetails ModelTraining Dataset Location Details 
- Possible object storage location types
- DatasetType string
- Possible data sets
- DatasetId string
- Data Science Labelling Service OCID
- LocationDetails ModelTraining Dataset Location Details 
- Possible object storage location types
- datasetType String
- Possible data sets
- datasetId String
- Data Science Labelling Service OCID
- locationDetails ModelTraining Dataset Location Details 
- Possible object storage location types
- datasetType string
- Possible data sets
- datasetId string
- Data Science Labelling Service OCID
- locationDetails ModelTraining Dataset Location Details 
- Possible object storage location types
- dataset_type str
- Possible data sets
- dataset_id str
- Data Science Labelling Service OCID
- location_details ModelTraining Dataset Location Details 
- Possible object storage location types
- datasetType String
- Possible data sets
- datasetId String
- Data Science Labelling Service OCID
- locationDetails Property Map
- Possible object storage location types
ModelTrainingDatasetLocationDetails, ModelTrainingDatasetLocationDetailsArgs          
- Bucket string
- Object storage bucket name
- LocationType string
- Possible object storage location types
- Namespace string
- Object storage namespace
- ObjectNames List<string>
- Array of files which need to be processed in the bucket - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- Bucket string
- Object storage bucket name
- LocationType string
- Possible object storage location types
- Namespace string
- Object storage namespace
- ObjectNames []string
- Array of files which need to be processed in the bucket - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- bucket String
- Object storage bucket name
- locationType String
- Possible object storage location types
- namespace String
- Object storage namespace
- objectNames List<String>
- Array of files which need to be processed in the bucket - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- bucket string
- Object storage bucket name
- locationType string
- Possible object storage location types
- namespace string
- Object storage namespace
- objectNames string[]
- Array of files which need to be processed in the bucket - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- bucket str
- Object storage bucket name
- location_type str
- Possible object storage location types
- namespace str
- Object storage namespace
- object_names Sequence[str]
- Array of files which need to be processed in the bucket - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- bucket String
- Object storage bucket name
- locationType String
- Possible object storage location types
- namespace String
- Object storage namespace
- objectNames List<String>
- Array of files which need to be processed in the bucket - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
Import
Models can be imported using the id, e.g.
$ pulumi import oci:AiLanguage/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.