Oracle Cloud Infrastructure v2.33.0 published on Thursday, May 1, 2025 by Pulumi
oci.AiVision.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Ai Vision service.
Gets a Model by identifier
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.AiVision.getModel({
    modelId: testModelOciAiVisionModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.AiVision.get_model(model_id=test_model_oci_ai_vision_model["id"])
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aivision"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aivision.GetModel(ctx, &aivision.GetModelArgs{
			ModelId: testModelOciAiVisionModel.Id,
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = Oci.AiVision.GetModel.Invoke(new()
    {
        ModelId = testModelOciAiVisionModel.Id,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.AiVisionFunctions;
import com.pulumi.oci.AiVision.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModel = AiVisionFunctions.getModel(GetModelArgs.builder()
            .modelId(testModelOciAiVisionModel.id())
            .build());
    }
}
variables:
  testModel:
    fn::invoke:
      function: oci:AiVision:getModel
      arguments:
        modelId: ${testModelOciAiVisionModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>def get_model(model_id: Optional[str] = None,
              opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
              opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]func LookupModel(ctx *Context, args *LookupModelArgs, opts ...InvokeOption) (*LookupModelResult, error)
func LookupModelOutput(ctx *Context, args *LookupModelOutputArgs, opts ...InvokeOption) LookupModelResultOutput> Note: This function is named LookupModel in the Go SDK.
public static class GetModel 
{
    public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
    public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
public static Output<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
fn::invoke:
  function: oci:AiVision/getModel:getModel
  arguments:
    # arguments dictionaryThe following arguments are supported:
- ModelId string
- unique Model identifier
- ModelId string
- unique Model identifier
- modelId String
- unique Model identifier
- modelId string
- unique Model identifier
- model_id str
- unique Model identifier
- modelId String
- unique Model identifier
getModel Result
The following output properties are available:
- AveragePrecision double
- Average precision of the trained model
- CompartmentId string
- Compartment Identifier
- ConfidenceThreshold double
- Confidence ratio of the calculation
- Dictionary<string, string>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- DisplayName string
- Model Identifier, can be renamed
- Dictionary<string, string>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- Id string
- Unique identifier that is immutable on creation
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- MaxTraining doubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- ModelId string
- ModelType string
- Type of the Model.
- ModelVersion string
- The version of the model
- Precision double
- Precision of the trained model
- ProjectId string
- The OCID of the project to associate with the model.
- Recall double
- Recall of the trained model
- State string
- The current state of the Model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TestingDatasets List<GetModel Testing Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration doubleIn Hours 
- Total hours actually used for training
- TrainingDatasets List<GetModel Training Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDatasets List<GetModel Validation Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- AveragePrecision float64
- Average precision of the trained model
- CompartmentId string
- Compartment Identifier
- ConfidenceThreshold float64
- Confidence ratio of the calculation
- map[string]string
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- A short description of the model.
- DisplayName string
- Model Identifier, can be renamed
- map[string]string
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- Id string
- Unique identifier that is immutable on creation
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- MaxTraining float64Duration In Hours 
- The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- ModelId string
- ModelType string
- Type of the Model.
- ModelVersion string
- The version of the model
- Precision float64
- Precision of the trained model
- ProjectId string
- The OCID of the project to associate with the model.
- Recall float64
- Recall of the trained model
- State string
- The current state of the Model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TestingDatasets []GetModel Testing Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration float64In Hours 
- Total hours actually used for training
- TrainingDatasets []GetModel Training Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDatasets []GetModel Validation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision Double
- Average precision of the trained model
- compartmentId String
- Compartment Identifier
- confidenceThreshold Double
- Confidence ratio of the calculation
- Map<String,String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- displayName String
- Model Identifier, can be renamed
- Map<String,String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id String
- Unique identifier that is immutable on creation
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining DoubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- modelId String
- modelType String
- Type of the Model.
- modelVersion String
- The version of the model
- precision Double
- Precision of the trained model
- projectId String
- The OCID of the project to associate with the model.
- recall Double
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage IntegerCount 
- Total number of testing Images
- testingDatasets List<GetModel Testing Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage IntegerCount 
- Total number of training Images
- trainedDuration DoubleIn Hours 
- Total hours actually used for training
- trainingDatasets List<GetModel Training Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- validationDatasets List<GetModel Validation Dataset> 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision number
- Average precision of the trained model
- compartmentId string
- Compartment Identifier
- confidenceThreshold number
- Confidence ratio of the calculation
- {[key: string]: string}
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description string
- A short description of the model.
- displayName string
- Model Identifier, can be renamed
- {[key: string]: string}
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id string
- Unique identifier that is immutable on creation
- isQuick booleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining numberDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics string
- Complete Training Metrics for successful trained model
- modelId string
- modelType string
- Type of the Model.
- modelVersion string
- The version of the model
- precision number
- Precision of the trained model
- projectId string
- The OCID of the project to associate with the model.
- recall number
- Recall of the trained model
- state string
- The current state of the Model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage numberCount 
- Total number of testing Images
- testingDatasets GetModel Testing Dataset[] 
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage numberCount 
- Total number of training Images
- trainedDuration numberIn Hours 
- Total hours actually used for training
- trainingDatasets GetModel Training Dataset[] 
- The base entity for a Dataset, which is the input for Model creation.
- validationDatasets GetModel Validation Dataset[] 
- The base entity for a Dataset, which is the input for Model creation.
- average_precision float
- Average precision of the trained model
- compartment_id str
- Compartment Identifier
- confidence_threshold float
- Confidence ratio of the calculation
- Mapping[str, str]
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description str
- A short description of the model.
- display_name str
- Model Identifier, can be renamed
- Mapping[str, str]
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id str
- Unique identifier that is immutable on creation
- is_quick_ boolmode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_details str
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_training_ floatduration_ in_ hours 
- The maximum duration in hours for which the training will run.
- metrics str
- Complete Training Metrics for successful trained model
- model_id str
- model_type str
- Type of the Model.
- model_version str
- The version of the model
- precision float
- Precision of the trained model
- project_id str
- The OCID of the project to associate with the model.
- recall float
- Recall of the trained model
- state str
- The current state of the Model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- test_image_ intcount 
- Total number of testing Images
- testing_datasets Sequence[GetModel Testing Dataset] 
- The base entity for a Dataset, which is the input for Model creation.
- time_created str
- The time the Model was created. An RFC3339 formatted datetime string
- time_updated str
- The time the Model was updated. An RFC3339 formatted datetime string
- total_image_ intcount 
- Total number of training Images
- trained_duration_ floatin_ hours 
- Total hours actually used for training
- training_datasets Sequence[GetModel Training Dataset] 
- The base entity for a Dataset, which is the input for Model creation.
- validation_datasets Sequence[GetModel Validation Dataset] 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision Number
- Average precision of the trained model
- compartmentId String
- Compartment Identifier
- confidenceThreshold Number
- Confidence ratio of the calculation
- Map<String>
- Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- A short description of the model.
- displayName String
- Model Identifier, can be renamed
- Map<String>
- Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- id String
- Unique identifier that is immutable on creation
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining NumberDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- modelId String
- modelType String
- Type of the Model.
- modelVersion String
- The version of the model
- precision Number
- Precision of the trained model
- projectId String
- The OCID of the project to associate with the model.
- recall Number
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage NumberCount 
- Total number of testing Images
- testingDatasets List<Property Map>
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage NumberCount 
- Total number of training Images
- trainedDuration NumberIn Hours 
- Total hours actually used for training
- trainingDatasets List<Property Map>
- The base entity for a Dataset, which is the input for Model creation.
- validationDatasets List<Property Map>
- The base entity for a Dataset, which is the input for Model creation.
Supporting Types
GetModelTestingDataset   
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- datasetType string
- Type of the Dataset.
- namespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- dataset_type str
- Type of the Dataset.
- namespace_name str
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelTrainingDataset   
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- datasetType string
- Type of the Dataset.
- namespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- dataset_type str
- Type of the Dataset.
- namespace_name str
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
GetModelValidationDataset   
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- DatasetType string
- Type of the Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- datasetType string
- Type of the Dataset.
- namespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- dataset_type str
- Type of the Dataset.
- namespace_name str
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- datasetType String
- Type of the Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.