oci.AiVision.Model
Explore with Pulumi AI
This resource provides the Model resource in Oracle Cloud Infrastructure Ai Vision service.
Creates a new Model.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = new oci.aivision.Model("test_model", {
    compartmentId: compartmentId,
    modelType: modelModelType,
    projectId: testProject.id,
    trainingDataset: {
        datasetType: modelTrainingDatasetDatasetType,
        bucket: modelTrainingDatasetBucket,
        datasetId: testDataset.id,
        namespaceName: modelTrainingDatasetNamespace,
        object: modelTrainingDatasetObject,
    },
    definedTags: {
        "foo-namespace.bar-key": "value",
    },
    description: modelDescription,
    displayName: modelDisplayName,
    freeformTags: {
        "bar-key": "value",
    },
    isQuickMode: modelIsQuickMode,
    maxTrainingDurationInHours: modelMaxTrainingDurationInHours,
    modelVersion: modelModelVersion,
    testingDataset: {
        datasetType: modelTestingDatasetDatasetType,
        bucket: modelTestingDatasetBucket,
        datasetId: testDataset.id,
        namespaceName: modelTestingDatasetNamespace,
        object: modelTestingDatasetObject,
    },
    validationDataset: {
        datasetType: modelValidationDatasetDatasetType,
        bucket: modelValidationDatasetBucket,
        datasetId: testDataset.id,
        namespaceName: modelValidationDatasetNamespace,
        object: modelValidationDatasetObject,
    },
});
import pulumi
import pulumi_oci as oci
test_model = oci.ai_vision.Model("test_model",
    compartment_id=compartment_id,
    model_type=model_model_type,
    project_id=test_project["id"],
    training_dataset={
        "dataset_type": model_training_dataset_dataset_type,
        "bucket": model_training_dataset_bucket,
        "dataset_id": test_dataset["id"],
        "namespace_name": model_training_dataset_namespace,
        "object": model_training_dataset_object,
    },
    defined_tags={
        "foo-namespace.bar-key": "value",
    },
    description=model_description,
    display_name=model_display_name,
    freeform_tags={
        "bar-key": "value",
    },
    is_quick_mode=model_is_quick_mode,
    max_training_duration_in_hours=model_max_training_duration_in_hours,
    model_version=model_model_version,
    testing_dataset={
        "dataset_type": model_testing_dataset_dataset_type,
        "bucket": model_testing_dataset_bucket,
        "dataset_id": test_dataset["id"],
        "namespace_name": model_testing_dataset_namespace,
        "object": model_testing_dataset_object,
    },
    validation_dataset={
        "dataset_type": model_validation_dataset_dataset_type,
        "bucket": model_validation_dataset_bucket,
        "dataset_id": test_dataset["id"],
        "namespace_name": model_validation_dataset_namespace,
        "object": model_validation_dataset_object,
    })
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/aivision"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := aivision.NewModel(ctx, "test_model", &aivision.ModelArgs{
			CompartmentId: pulumi.Any(compartmentId),
			ModelType:     pulumi.Any(modelModelType),
			ProjectId:     pulumi.Any(testProject.Id),
			TrainingDataset: &aivision.ModelTrainingDatasetArgs{
				DatasetType:   pulumi.Any(modelTrainingDatasetDatasetType),
				Bucket:        pulumi.Any(modelTrainingDatasetBucket),
				DatasetId:     pulumi.Any(testDataset.Id),
				NamespaceName: pulumi.Any(modelTrainingDatasetNamespace),
				Object:        pulumi.Any(modelTrainingDatasetObject),
			},
			DefinedTags: pulumi.StringMap{
				"foo-namespace.bar-key": pulumi.String("value"),
			},
			Description: pulumi.Any(modelDescription),
			DisplayName: pulumi.Any(modelDisplayName),
			FreeformTags: pulumi.StringMap{
				"bar-key": pulumi.String("value"),
			},
			IsQuickMode:                pulumi.Any(modelIsQuickMode),
			MaxTrainingDurationInHours: pulumi.Any(modelMaxTrainingDurationInHours),
			ModelVersion:               pulumi.Any(modelModelVersion),
			TestingDataset: &aivision.ModelTestingDatasetArgs{
				DatasetType:   pulumi.Any(modelTestingDatasetDatasetType),
				Bucket:        pulumi.Any(modelTestingDatasetBucket),
				DatasetId:     pulumi.Any(testDataset.Id),
				NamespaceName: pulumi.Any(modelTestingDatasetNamespace),
				Object:        pulumi.Any(modelTestingDatasetObject),
			},
			ValidationDataset: &aivision.ModelValidationDatasetArgs{
				DatasetType:   pulumi.Any(modelValidationDatasetDatasetType),
				Bucket:        pulumi.Any(modelValidationDatasetBucket),
				DatasetId:     pulumi.Any(testDataset.Id),
				NamespaceName: pulumi.Any(modelValidationDatasetNamespace),
				Object:        pulumi.Any(modelValidationDatasetObject),
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = new Oci.AiVision.Model("test_model", new()
    {
        CompartmentId = compartmentId,
        ModelType = modelModelType,
        ProjectId = testProject.Id,
        TrainingDataset = new Oci.AiVision.Inputs.ModelTrainingDatasetArgs
        {
            DatasetType = modelTrainingDatasetDatasetType,
            Bucket = modelTrainingDatasetBucket,
            DatasetId = testDataset.Id,
            NamespaceName = modelTrainingDatasetNamespace,
            Object = modelTrainingDatasetObject,
        },
        DefinedTags = 
        {
            { "foo-namespace.bar-key", "value" },
        },
        Description = modelDescription,
        DisplayName = modelDisplayName,
        FreeformTags = 
        {
            { "bar-key", "value" },
        },
        IsQuickMode = modelIsQuickMode,
        MaxTrainingDurationInHours = modelMaxTrainingDurationInHours,
        ModelVersion = modelModelVersion,
        TestingDataset = new Oci.AiVision.Inputs.ModelTestingDatasetArgs
        {
            DatasetType = modelTestingDatasetDatasetType,
            Bucket = modelTestingDatasetBucket,
            DatasetId = testDataset.Id,
            NamespaceName = modelTestingDatasetNamespace,
            Object = modelTestingDatasetObject,
        },
        ValidationDataset = new Oci.AiVision.Inputs.ModelValidationDatasetArgs
        {
            DatasetType = modelValidationDatasetDatasetType,
            Bucket = modelValidationDatasetBucket,
            DatasetId = testDataset.Id,
            NamespaceName = modelValidationDatasetNamespace,
            Object = modelValidationDatasetObject,
        },
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.AiVision.Model;
import com.pulumi.oci.AiVision.ModelArgs;
import com.pulumi.oci.AiVision.inputs.ModelTrainingDatasetArgs;
import com.pulumi.oci.AiVision.inputs.ModelTestingDatasetArgs;
import com.pulumi.oci.AiVision.inputs.ModelValidationDatasetArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var testModel = new Model("testModel", ModelArgs.builder()
            .compartmentId(compartmentId)
            .modelType(modelModelType)
            .projectId(testProject.id())
            .trainingDataset(ModelTrainingDatasetArgs.builder()
                .datasetType(modelTrainingDatasetDatasetType)
                .bucket(modelTrainingDatasetBucket)
                .datasetId(testDataset.id())
                .namespaceName(modelTrainingDatasetNamespace)
                .object(modelTrainingDatasetObject)
                .build())
            .definedTags(Map.of("foo-namespace.bar-key", "value"))
            .description(modelDescription)
            .displayName(modelDisplayName)
            .freeformTags(Map.of("bar-key", "value"))
            .isQuickMode(modelIsQuickMode)
            .maxTrainingDurationInHours(modelMaxTrainingDurationInHours)
            .modelVersion(modelModelVersion)
            .testingDataset(ModelTestingDatasetArgs.builder()
                .datasetType(modelTestingDatasetDatasetType)
                .bucket(modelTestingDatasetBucket)
                .datasetId(testDataset.id())
                .namespaceName(modelTestingDatasetNamespace)
                .object(modelTestingDatasetObject)
                .build())
            .validationDataset(ModelValidationDatasetArgs.builder()
                .datasetType(modelValidationDatasetDatasetType)
                .bucket(modelValidationDatasetBucket)
                .datasetId(testDataset.id())
                .namespaceName(modelValidationDatasetNamespace)
                .object(modelValidationDatasetObject)
                .build())
            .build());
    }
}
resources:
  testModel:
    type: oci:AiVision:Model
    name: test_model
    properties:
      compartmentId: ${compartmentId}
      modelType: ${modelModelType}
      projectId: ${testProject.id}
      trainingDataset:
        datasetType: ${modelTrainingDatasetDatasetType}
        bucket: ${modelTrainingDatasetBucket}
        datasetId: ${testDataset.id}
        namespaceName: ${modelTrainingDatasetNamespace}
        object: ${modelTrainingDatasetObject}
      definedTags:
        foo-namespace.bar-key: value
      description: ${modelDescription}
      displayName: ${modelDisplayName}
      freeformTags:
        bar-key: value
      isQuickMode: ${modelIsQuickMode}
      maxTrainingDurationInHours: ${modelMaxTrainingDurationInHours}
      modelVersion: ${modelModelVersion}
      testingDataset:
        datasetType: ${modelTestingDatasetDatasetType}
        bucket: ${modelTestingDatasetBucket}
        datasetId: ${testDataset.id}
        namespaceName: ${modelTestingDatasetNamespace}
        object: ${modelTestingDatasetObject}
      validationDataset:
        datasetType: ${modelValidationDatasetDatasetType}
        bucket: ${modelValidationDatasetBucket}
        datasetId: ${testDataset.id}
        namespaceName: ${modelValidationDatasetNamespace}
        object: ${modelValidationDatasetObject}
Create Model Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Model(name: string, args: ModelArgs, opts?: CustomResourceOptions);@overload
def Model(resource_name: str,
          args: ModelArgs,
          opts: Optional[ResourceOptions] = None)
@overload
def Model(resource_name: str,
          opts: Optional[ResourceOptions] = None,
          model_type: Optional[str] = None,
          training_dataset: Optional[ModelTrainingDatasetArgs] = None,
          project_id: Optional[str] = None,
          compartment_id: Optional[str] = None,
          display_name: Optional[str] = None,
          is_quick_mode: Optional[bool] = None,
          max_training_duration_in_hours: Optional[float] = None,
          freeform_tags: Optional[Mapping[str, str]] = None,
          model_version: Optional[str] = None,
          description: Optional[str] = None,
          testing_dataset: Optional[ModelTestingDatasetArgs] = None,
          defined_tags: Optional[Mapping[str, str]] = None,
          validation_dataset: Optional[ModelValidationDatasetArgs] = None)func NewModel(ctx *Context, name string, args ModelArgs, opts ...ResourceOption) (*Model, error)public Model(string name, ModelArgs args, CustomResourceOptions? opts = null)type: oci:AiVision:Model
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var examplemodelResourceResourceFromAiVisionmodel = new Oci.AiVision.Model("examplemodelResourceResourceFromAiVisionmodel", new()
{
    ModelType = "string",
    TrainingDataset = new Oci.AiVision.Inputs.ModelTrainingDatasetArgs
    {
        DatasetType = "string",
        Bucket = "string",
        DatasetId = "string",
        NamespaceName = "string",
        Object = "string",
    },
    ProjectId = "string",
    CompartmentId = "string",
    DisplayName = "string",
    IsQuickMode = false,
    MaxTrainingDurationInHours = 0,
    FreeformTags = 
    {
        { "string", "string" },
    },
    ModelVersion = "string",
    Description = "string",
    TestingDataset = new Oci.AiVision.Inputs.ModelTestingDatasetArgs
    {
        DatasetType = "string",
        Bucket = "string",
        DatasetId = "string",
        NamespaceName = "string",
        Object = "string",
    },
    DefinedTags = 
    {
        { "string", "string" },
    },
    ValidationDataset = new Oci.AiVision.Inputs.ModelValidationDatasetArgs
    {
        DatasetType = "string",
        Bucket = "string",
        DatasetId = "string",
        NamespaceName = "string",
        Object = "string",
    },
});
example, err := aivision.NewModel(ctx, "examplemodelResourceResourceFromAiVisionmodel", &aivision.ModelArgs{
	ModelType: pulumi.String("string"),
	TrainingDataset: &aivision.ModelTrainingDatasetArgs{
		DatasetType:   pulumi.String("string"),
		Bucket:        pulumi.String("string"),
		DatasetId:     pulumi.String("string"),
		NamespaceName: pulumi.String("string"),
		Object:        pulumi.String("string"),
	},
	ProjectId:                  pulumi.String("string"),
	CompartmentId:              pulumi.String("string"),
	DisplayName:                pulumi.String("string"),
	IsQuickMode:                pulumi.Bool(false),
	MaxTrainingDurationInHours: pulumi.Float64(0),
	FreeformTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	ModelVersion: pulumi.String("string"),
	Description:  pulumi.String("string"),
	TestingDataset: &aivision.ModelTestingDatasetArgs{
		DatasetType:   pulumi.String("string"),
		Bucket:        pulumi.String("string"),
		DatasetId:     pulumi.String("string"),
		NamespaceName: pulumi.String("string"),
		Object:        pulumi.String("string"),
	},
	DefinedTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	ValidationDataset: &aivision.ModelValidationDatasetArgs{
		DatasetType:   pulumi.String("string"),
		Bucket:        pulumi.String("string"),
		DatasetId:     pulumi.String("string"),
		NamespaceName: pulumi.String("string"),
		Object:        pulumi.String("string"),
	},
})
var examplemodelResourceResourceFromAiVisionmodel = new com.pulumi.oci.AiVision.Model("examplemodelResourceResourceFromAiVisionmodel", com.pulumi.oci.AiVision.ModelArgs.builder()
    .modelType("string")
    .trainingDataset(ModelTrainingDatasetArgs.builder()
        .datasetType("string")
        .bucket("string")
        .datasetId("string")
        .namespaceName("string")
        .object("string")
        .build())
    .projectId("string")
    .compartmentId("string")
    .displayName("string")
    .isQuickMode(false)
    .maxTrainingDurationInHours(0.0)
    .freeformTags(Map.of("string", "string"))
    .modelVersion("string")
    .description("string")
    .testingDataset(ModelTestingDatasetArgs.builder()
        .datasetType("string")
        .bucket("string")
        .datasetId("string")
        .namespaceName("string")
        .object("string")
        .build())
    .definedTags(Map.of("string", "string"))
    .validationDataset(ModelValidationDatasetArgs.builder()
        .datasetType("string")
        .bucket("string")
        .datasetId("string")
        .namespaceName("string")
        .object("string")
        .build())
    .build());
examplemodel_resource_resource_from_ai_visionmodel = oci.ai_vision.Model("examplemodelResourceResourceFromAiVisionmodel",
    model_type="string",
    training_dataset={
        "dataset_type": "string",
        "bucket": "string",
        "dataset_id": "string",
        "namespace_name": "string",
        "object": "string",
    },
    project_id="string",
    compartment_id="string",
    display_name="string",
    is_quick_mode=False,
    max_training_duration_in_hours=0,
    freeform_tags={
        "string": "string",
    },
    model_version="string",
    description="string",
    testing_dataset={
        "dataset_type": "string",
        "bucket": "string",
        "dataset_id": "string",
        "namespace_name": "string",
        "object": "string",
    },
    defined_tags={
        "string": "string",
    },
    validation_dataset={
        "dataset_type": "string",
        "bucket": "string",
        "dataset_id": "string",
        "namespace_name": "string",
        "object": "string",
    })
const examplemodelResourceResourceFromAiVisionmodel = new oci.aivision.Model("examplemodelResourceResourceFromAiVisionmodel", {
    modelType: "string",
    trainingDataset: {
        datasetType: "string",
        bucket: "string",
        datasetId: "string",
        namespaceName: "string",
        object: "string",
    },
    projectId: "string",
    compartmentId: "string",
    displayName: "string",
    isQuickMode: false,
    maxTrainingDurationInHours: 0,
    freeformTags: {
        string: "string",
    },
    modelVersion: "string",
    description: "string",
    testingDataset: {
        datasetType: "string",
        bucket: "string",
        datasetId: "string",
        namespaceName: "string",
        object: "string",
    },
    definedTags: {
        string: "string",
    },
    validationDataset: {
        datasetType: "string",
        bucket: "string",
        datasetId: "string",
        namespaceName: "string",
        object: "string",
    },
});
type: oci:AiVision:Model
properties:
    compartmentId: string
    definedTags:
        string: string
    description: string
    displayName: string
    freeformTags:
        string: string
    isQuickMode: false
    maxTrainingDurationInHours: 0
    modelType: string
    modelVersion: string
    projectId: string
    testingDataset:
        bucket: string
        datasetId: string
        datasetType: string
        namespaceName: string
        object: string
    trainingDataset:
        bucket: string
        datasetId: string
        datasetType: string
        namespaceName: string
        object: string
    validationDataset:
        bucket: string
        datasetId: string
        datasetType: string
        namespaceName: string
        object: string
Model Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Model resource accepts the following input properties:
- CompartmentId string
- (Updatable) Compartment Identifier
- ModelType string
- The type of the model.
- ProjectId string
- The OCID of the project to associate with the model.
- TrainingDataset ModelTraining Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the Model.
- DisplayName string
- (Updatable) Model Identifier
- Dictionary<string, string>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- MaxTraining doubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- ModelVersion string
- Model version.
- TestingDataset ModelTesting Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDataset ModelValidation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- CompartmentId string
- (Updatable) Compartment Identifier
- ModelType string
- The type of the model.
- ProjectId string
- The OCID of the project to associate with the model.
- TrainingDataset ModelTraining Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the Model.
- DisplayName string
- (Updatable) Model Identifier
- map[string]string
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- MaxTraining float64Duration In Hours 
- The maximum duration in hours for which the training will run.
- ModelVersion string
- Model version.
- TestingDataset ModelTesting Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDataset ModelValidation Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- compartmentId String
- (Updatable) Compartment Identifier
- modelType String
- The type of the model.
- projectId String
- The OCID of the project to associate with the model.
- trainingDataset ModelTraining Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the Model.
- displayName String
- (Updatable) Model Identifier
- Map<String,String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- maxTraining DoubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- modelVersion String
- Model version.
- testingDataset ModelTesting Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- validationDataset ModelValidation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- compartmentId string
- (Updatable) Compartment Identifier
- modelType string
- The type of the model.
- projectId string
- The OCID of the project to associate with the model.
- trainingDataset ModelTraining Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description string
- (Updatable) A short description of the Model.
- displayName string
- (Updatable) Model Identifier
- {[key: string]: string}
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- isQuick booleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- maxTraining numberDuration In Hours 
- The maximum duration in hours for which the training will run.
- modelVersion string
- Model version.
- testingDataset ModelTesting Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- validationDataset ModelValidation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- compartment_id str
- (Updatable) Compartment Identifier
- model_type str
- The type of the model.
- project_id str
- The OCID of the project to associate with the model.
- training_dataset ModelTraining Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description str
- (Updatable) A short description of the Model.
- display_name str
- (Updatable) Model Identifier
- Mapping[str, str]
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- is_quick_ boolmode 
- If It's true, Training is set for recommended epochs needed for quick training.
- max_training_ floatduration_ in_ hours 
- The maximum duration in hours for which the training will run.
- model_version str
- Model version.
- testing_dataset ModelTesting Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- validation_dataset ModelValidation Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- compartmentId String
- (Updatable) Compartment Identifier
- modelType String
- The type of the model.
- projectId String
- The OCID of the project to associate with the model.
- trainingDataset Property Map
- The base entity for a Dataset, which is the input for Model creation.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the Model.
- displayName String
- (Updatable) Model Identifier
- Map<String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- maxTraining NumberDuration In Hours 
- The maximum duration in hours for which the training will run.
- modelVersion String
- Model version.
- testingDataset Property Map
- The base entity for a Dataset, which is the input for Model creation.
- validationDataset Property Map
- The base entity for a Dataset, which is the input for Model creation.
Outputs
All input properties are implicitly available as output properties. Additionally, the Model resource produces the following output properties:
- AveragePrecision double
- Average precision of the trained model
- ConfidenceThreshold double
- Confidence ratio of the calculation
- Id string
- The provider-assigned unique ID for this managed resource.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Metrics string
- Complete Training Metrics for successful trained model
- Precision double
- Precision of the trained model
- Recall double
- Recall of the trained model
- State string
- The current state of the Model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration doubleIn Hours 
- Total hours actually used for training
- AveragePrecision float64
- Average precision of the trained model
- ConfidenceThreshold float64
- Confidence ratio of the calculation
- Id string
- The provider-assigned unique ID for this managed resource.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- Metrics string
- Complete Training Metrics for successful trained model
- Precision float64
- Precision of the trained model
- Recall float64
- Recall of the trained model
- State string
- The current state of the Model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration float64In Hours 
- Total hours actually used for training
- averagePrecision Double
- Average precision of the trained model
- confidenceThreshold Double
- Confidence ratio of the calculation
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- metrics String
- Complete Training Metrics for successful trained model
- precision Double
- Precision of the trained model
- recall Double
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage IntegerCount 
- Total number of testing Images
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage IntegerCount 
- Total number of training Images
- trainedDuration DoubleIn Hours 
- Total hours actually used for training
- averagePrecision number
- Average precision of the trained model
- confidenceThreshold number
- Confidence ratio of the calculation
- id string
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- metrics string
- Complete Training Metrics for successful trained model
- precision number
- Precision of the trained model
- recall number
- Recall of the trained model
- state string
- The current state of the Model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage numberCount 
- Total number of testing Images
- timeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage numberCount 
- Total number of training Images
- trainedDuration numberIn Hours 
- Total hours actually used for training
- average_precision float
- Average precision of the trained model
- confidence_threshold float
- Confidence ratio of the calculation
- id str
- The provider-assigned unique ID for this managed resource.
- lifecycle_details str
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- metrics str
- Complete Training Metrics for successful trained model
- precision float
- Precision of the trained model
- recall float
- Recall of the trained model
- state str
- The current state of the Model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- test_image_ intcount 
- Total number of testing Images
- time_created str
- The time the Model was created. An RFC3339 formatted datetime string
- time_updated str
- The time the Model was updated. An RFC3339 formatted datetime string
- total_image_ intcount 
- Total number of training Images
- trained_duration_ floatin_ hours 
- Total hours actually used for training
- averagePrecision Number
- Average precision of the trained model
- confidenceThreshold Number
- Confidence ratio of the calculation
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- metrics String
- Complete Training Metrics for successful trained model
- precision Number
- Precision of the trained model
- recall Number
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage NumberCount 
- Total number of testing Images
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage NumberCount 
- Total number of training Images
- trainedDuration NumberIn Hours 
- Total hours actually used for training
Look up Existing Model Resource
Get an existing Model resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelState, opts?: CustomResourceOptions): Model@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        average_precision: Optional[float] = None,
        compartment_id: Optional[str] = None,
        confidence_threshold: Optional[float] = None,
        defined_tags: Optional[Mapping[str, str]] = None,
        description: Optional[str] = None,
        display_name: Optional[str] = None,
        freeform_tags: Optional[Mapping[str, str]] = None,
        is_quick_mode: Optional[bool] = None,
        lifecycle_details: Optional[str] = None,
        max_training_duration_in_hours: Optional[float] = None,
        metrics: Optional[str] = None,
        model_type: Optional[str] = None,
        model_version: Optional[str] = None,
        precision: Optional[float] = None,
        project_id: Optional[str] = None,
        recall: Optional[float] = None,
        state: Optional[str] = None,
        system_tags: Optional[Mapping[str, str]] = None,
        test_image_count: Optional[int] = None,
        testing_dataset: Optional[ModelTestingDatasetArgs] = None,
        time_created: Optional[str] = None,
        time_updated: Optional[str] = None,
        total_image_count: Optional[int] = None,
        trained_duration_in_hours: Optional[float] = None,
        training_dataset: Optional[ModelTrainingDatasetArgs] = None,
        validation_dataset: Optional[ModelValidationDatasetArgs] = None) -> Modelfunc GetModel(ctx *Context, name string, id IDInput, state *ModelState, opts ...ResourceOption) (*Model, error)public static Model Get(string name, Input<string> id, ModelState? state, CustomResourceOptions? opts = null)public static Model get(String name, Output<String> id, ModelState state, CustomResourceOptions options)resources:  _:    type: oci:AiVision:Model    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- AveragePrecision double
- Average precision of the trained model
- CompartmentId string
- (Updatable) Compartment Identifier
- ConfidenceThreshold double
- Confidence ratio of the calculation
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the Model.
- DisplayName string
- (Updatable) Model Identifier
- Dictionary<string, string>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- MaxTraining doubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- ModelType string
- The type of the model.
- ModelVersion string
- Model version.
- Precision double
- Precision of the trained model
- ProjectId string
- The OCID of the project to associate with the model.
- Recall double
- Recall of the trained model
- State string
- The current state of the Model.
- Dictionary<string, string>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TestingDataset ModelTesting Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration doubleIn Hours 
- Total hours actually used for training
- TrainingDataset ModelTraining Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDataset ModelValidation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- AveragePrecision float64
- Average precision of the trained model
- CompartmentId string
- (Updatable) Compartment Identifier
- ConfidenceThreshold float64
- Confidence ratio of the calculation
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- Description string
- (Updatable) A short description of the Model.
- DisplayName string
- (Updatable) Model Identifier
- map[string]string
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- IsQuick boolMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- LifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- MaxTraining float64Duration In Hours 
- The maximum duration in hours for which the training will run.
- Metrics string
- Complete Training Metrics for successful trained model
- ModelType string
- The type of the model.
- ModelVersion string
- Model version.
- Precision float64
- Precision of the trained model
- ProjectId string
- The OCID of the project to associate with the model.
- Recall float64
- Recall of the trained model
- State string
- The current state of the Model.
- map[string]string
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- TestImage intCount 
- Total number of testing Images
- TestingDataset ModelTesting Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- TimeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- TimeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- TotalImage intCount 
- Total number of training Images
- TrainedDuration float64In Hours 
- Total hours actually used for training
- TrainingDataset ModelTraining Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- ValidationDataset ModelValidation Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision Double
- Average precision of the trained model
- compartmentId String
- (Updatable) Compartment Identifier
- confidenceThreshold Double
- Confidence ratio of the calculation
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the Model.
- displayName String
- (Updatable) Model Identifier
- Map<String,String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining DoubleDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- modelType String
- The type of the model.
- modelVersion String
- Model version.
- precision Double
- Precision of the trained model
- projectId String
- The OCID of the project to associate with the model.
- recall Double
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String,String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage IntegerCount 
- Total number of testing Images
- testingDataset ModelTesting Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage IntegerCount 
- Total number of training Images
- trainedDuration DoubleIn Hours 
- Total hours actually used for training
- trainingDataset ModelTraining Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- validationDataset ModelValidation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision number
- Average precision of the trained model
- compartmentId string
- (Updatable) Compartment Identifier
- confidenceThreshold number
- Confidence ratio of the calculation
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description string
- (Updatable) A short description of the Model.
- displayName string
- (Updatable) Model Identifier
- {[key: string]: string}
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- isQuick booleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails string
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining numberDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics string
- Complete Training Metrics for successful trained model
- modelType string
- The type of the model.
- modelVersion string
- Model version.
- precision number
- Precision of the trained model
- projectId string
- The OCID of the project to associate with the model.
- recall number
- Recall of the trained model
- state string
- The current state of the Model.
- {[key: string]: string}
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage numberCount 
- Total number of testing Images
- testingDataset ModelTesting Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated string
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated string
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage numberCount 
- Total number of training Images
- trainedDuration numberIn Hours 
- Total hours actually used for training
- trainingDataset ModelTraining Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- validationDataset ModelValidation Dataset 
- The base entity for a Dataset, which is the input for Model creation.
- average_precision float
- Average precision of the trained model
- compartment_id str
- (Updatable) Compartment Identifier
- confidence_threshold float
- Confidence ratio of the calculation
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description str
- (Updatable) A short description of the Model.
- display_name str
- (Updatable) Model Identifier
- Mapping[str, str]
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- is_quick_ boolmode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycle_details str
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- max_training_ floatduration_ in_ hours 
- The maximum duration in hours for which the training will run.
- metrics str
- Complete Training Metrics for successful trained model
- model_type str
- The type of the model.
- model_version str
- Model version.
- precision float
- Precision of the trained model
- project_id str
- The OCID of the project to associate with the model.
- recall float
- Recall of the trained model
- state str
- The current state of the Model.
- Mapping[str, str]
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- test_image_ intcount 
- Total number of testing Images
- testing_dataset ModelTesting Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- time_created str
- The time the Model was created. An RFC3339 formatted datetime string
- time_updated str
- The time the Model was updated. An RFC3339 formatted datetime string
- total_image_ intcount 
- Total number of training Images
- trained_duration_ floatin_ hours 
- Total hours actually used for training
- training_dataset ModelTraining Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- validation_dataset ModelValidation Dataset Args 
- The base entity for a Dataset, which is the input for Model creation.
- averagePrecision Number
- Average precision of the trained model
- compartmentId String
- (Updatable) Compartment Identifier
- confidenceThreshold Number
- Confidence ratio of the calculation
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: {"foo-namespace.bar-key": "value"}
- description String
- (Updatable) A short description of the Model.
- displayName String
- (Updatable) Model Identifier
- Map<String>
- (Updatable) Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: {"bar-key": "value"}
- isQuick BooleanMode 
- If It's true, Training is set for recommended epochs needed for quick training.
- lifecycleDetails String
- A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state.
- maxTraining NumberDuration In Hours 
- The maximum duration in hours for which the training will run.
- metrics String
- Complete Training Metrics for successful trained model
- modelType String
- The type of the model.
- modelVersion String
- Model version.
- precision Number
- Precision of the trained model
- projectId String
- The OCID of the project to associate with the model.
- recall Number
- Recall of the trained model
- state String
- The current state of the Model.
- Map<String>
- Usage of system tag keys. These predefined keys are scoped to namespaces. Example: {"orcl-cloud.free-tier-retained": "true"}
- testImage NumberCount 
- Total number of testing Images
- testingDataset Property Map
- The base entity for a Dataset, which is the input for Model creation.
- timeCreated String
- The time the Model was created. An RFC3339 formatted datetime string
- timeUpdated String
- The time the Model was updated. An RFC3339 formatted datetime string
- totalImage NumberCount 
- Total number of training Images
- trainedDuration NumberIn Hours 
- Total hours actually used for training
- trainingDataset Property Map
- The base entity for a Dataset, which is the input for Model creation.
- validationDataset Property Map
- The base entity for a Dataset, which is the input for Model creation.
Supporting Types
ModelTestingDataset, ModelTestingDatasetArgs      
- DatasetType string
- Type of the Dataset.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- DatasetType string
- Type of the Dataset.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- datasetType String
- Type of the Dataset.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- datasetType string
- Type of the Dataset.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- namespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- dataset_type str
- Type of the Dataset.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- namespace_name str
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- datasetType String
- Type of the Dataset.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
ModelTrainingDataset, ModelTrainingDatasetArgs      
- DatasetType string
- Type of the Dataset.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- DatasetType string
- Type of the Dataset.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file.
- datasetType String
- Type of the Dataset.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
- datasetType string
- Type of the Dataset.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- namespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file.
- dataset_type str
- Type of the Dataset.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- namespace_name str
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file.
- datasetType String
- Type of the Dataset.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file.
ModelValidationDataset, ModelValidationDatasetArgs      
- DatasetType string
- Type of the Dataset.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- DatasetType string
- Type of the Dataset.
- Bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- DatasetId string
- The OCID of the Data Science Labeling Dataset.
- NamespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- Object string
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- datasetType String
- Type of the Dataset.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- datasetType string
- Type of the Dataset.
- bucket string
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId string
- The OCID of the Data Science Labeling Dataset.
- namespaceName string
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object string
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- dataset_type str
- Type of the Dataset.
- bucket str
- The name of the ObjectStorage bucket that contains the input data file.
- dataset_id str
- The OCID of the Data Science Labeling Dataset.
- namespace_name str
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object str
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- datasetType String
- Type of the Dataset.
- bucket String
- The name of the ObjectStorage bucket that contains the input data file.
- datasetId String
- The OCID of the Data Science Labeling Dataset.
- namespaceName String
- The namespace name of the ObjectStorage bucket that contains the input data file.
- object String
- The object name of the input data file. - ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
Import
Models can be imported using the id, e.g.
$ pulumi import oci:AiVision/model:Model test_model "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.