oci.DataScience.ModelDeployment
Explore with Pulumi AI
This resource provides the Model Deployment resource in Oracle Cloud Infrastructure Datascience service.
Creates a new model deployment.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModelDeployment = new oci.datascience.ModelDeployment("test_model_deployment", {
    compartmentId: compartmentId,
    modelDeploymentConfigurationDetails: {
        deploymentType: modelDeploymentModelDeploymentConfigurationDetailsDeploymentType,
        modelConfigurationDetails: {
            instanceConfiguration: {
                instanceShapeName: testShape.name,
                modelDeploymentInstanceShapeConfigDetails: {
                    cpuBaseline: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsCpuBaseline,
                    memoryInGbs: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsMemoryInGbs,
                    ocpus: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsOcpus,
                },
                privateEndpointId: testPrivateEndpoint.id,
                subnetId: testSubnet.id,
            },
            modelId: testModel.id,
            bandwidthMbps: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsBandwidthMbps,
            maximumBandwidthMbps: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsMaximumBandwidthMbps,
            scalingPolicy: {
                policyType: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyPolicyType,
                autoScalingPolicies: [{
                    autoScalingPolicyType: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesAutoScalingPolicyType,
                    initialInstanceCount: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesInitialInstanceCount,
                    maximumInstanceCount: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMaximumInstanceCount,
                    minimumInstanceCount: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMinimumInstanceCount,
                    rules: [{
                        metricExpressionRuleType: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricExpressionRuleType,
                        scaleInConfiguration: {
                            instanceCountAdjustment: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationInstanceCountAdjustment,
                            pendingDuration: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationPendingDuration,
                            query: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationQuery,
                            scalingConfigurationType: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationScalingConfigurationType,
                            threshold: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationThreshold,
                        },
                        scaleOutConfiguration: {
                            instanceCountAdjustment: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationInstanceCountAdjustment,
                            pendingDuration: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationPendingDuration,
                            query: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationQuery,
                            scalingConfigurationType: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationScalingConfigurationType,
                            threshold: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationThreshold,
                        },
                        metricType: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricType,
                    }],
                }],
                coolDownInSeconds: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyCoolDownInSeconds,
                instanceCount: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyInstanceCount,
                isEnabled: modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyIsEnabled,
            },
        },
        environmentConfigurationDetails: {
            environmentConfigurationType: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentConfigurationType,
            cmds: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsCmd,
            entrypoints: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEntrypoint,
            environmentVariables: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentVariables,
            healthCheckPort: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsHealthCheckPort,
            image: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImage,
            imageDigest: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImageDigest,
            serverPort: modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsServerPort,
        },
    },
    projectId: testProject.id,
    categoryLogDetails: {
        access: {
            logGroupId: testLogGroup.id,
            logId: testLog.id,
        },
        predict: {
            logGroupId: testLogGroup.id,
            logId: testLog.id,
        },
    },
    definedTags: {
        "Operations.CostCenter": "42",
    },
    description: modelDeploymentDescription,
    displayName: modelDeploymentDisplayName,
    freeformTags: {
        Department: "Finance",
    },
    opcParentRptUrl: modelDeploymentOpcParentRptUrl,
});
import pulumi
import pulumi_oci as oci
test_model_deployment = oci.data_science.ModelDeployment("test_model_deployment",
    compartment_id=compartment_id,
    model_deployment_configuration_details={
        "deployment_type": model_deployment_model_deployment_configuration_details_deployment_type,
        "model_configuration_details": {
            "instance_configuration": {
                "instance_shape_name": test_shape["name"],
                "model_deployment_instance_shape_config_details": {
                    "cpu_baseline": model_deployment_model_deployment_configuration_details_model_configuration_details_instance_configuration_model_deployment_instance_shape_config_details_cpu_baseline,
                    "memory_in_gbs": model_deployment_model_deployment_configuration_details_model_configuration_details_instance_configuration_model_deployment_instance_shape_config_details_memory_in_gbs,
                    "ocpus": model_deployment_model_deployment_configuration_details_model_configuration_details_instance_configuration_model_deployment_instance_shape_config_details_ocpus,
                },
                "private_endpoint_id": test_private_endpoint["id"],
                "subnet_id": test_subnet["id"],
            },
            "model_id": test_model["id"],
            "bandwidth_mbps": model_deployment_model_deployment_configuration_details_model_configuration_details_bandwidth_mbps,
            "maximum_bandwidth_mbps": model_deployment_model_deployment_configuration_details_model_configuration_details_maximum_bandwidth_mbps,
            "scaling_policy": {
                "policy_type": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_policy_type,
                "auto_scaling_policies": [{
                    "auto_scaling_policy_type": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_auto_scaling_policy_type,
                    "initial_instance_count": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_initial_instance_count,
                    "maximum_instance_count": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_maximum_instance_count,
                    "minimum_instance_count": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_minimum_instance_count,
                    "rules": [{
                        "metric_expression_rule_type": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_metric_expression_rule_type,
                        "scale_in_configuration": {
                            "instance_count_adjustment": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_in_configuration_instance_count_adjustment,
                            "pending_duration": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_in_configuration_pending_duration,
                            "query": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_in_configuration_query,
                            "scaling_configuration_type": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_in_configuration_scaling_configuration_type,
                            "threshold": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_in_configuration_threshold,
                        },
                        "scale_out_configuration": {
                            "instance_count_adjustment": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_out_configuration_instance_count_adjustment,
                            "pending_duration": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_out_configuration_pending_duration,
                            "query": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_out_configuration_query,
                            "scaling_configuration_type": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_out_configuration_scaling_configuration_type,
                            "threshold": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_scale_out_configuration_threshold,
                        },
                        "metric_type": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_auto_scaling_policies_rules_metric_type,
                    }],
                }],
                "cool_down_in_seconds": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_cool_down_in_seconds,
                "instance_count": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_instance_count,
                "is_enabled": model_deployment_model_deployment_configuration_details_model_configuration_details_scaling_policy_is_enabled,
            },
        },
        "environment_configuration_details": {
            "environment_configuration_type": model_deployment_model_deployment_configuration_details_environment_configuration_details_environment_configuration_type,
            "cmds": model_deployment_model_deployment_configuration_details_environment_configuration_details_cmd,
            "entrypoints": model_deployment_model_deployment_configuration_details_environment_configuration_details_entrypoint,
            "environment_variables": model_deployment_model_deployment_configuration_details_environment_configuration_details_environment_variables,
            "health_check_port": model_deployment_model_deployment_configuration_details_environment_configuration_details_health_check_port,
            "image": model_deployment_model_deployment_configuration_details_environment_configuration_details_image,
            "image_digest": model_deployment_model_deployment_configuration_details_environment_configuration_details_image_digest,
            "server_port": model_deployment_model_deployment_configuration_details_environment_configuration_details_server_port,
        },
    },
    project_id=test_project["id"],
    category_log_details={
        "access": {
            "log_group_id": test_log_group["id"],
            "log_id": test_log["id"],
        },
        "predict": {
            "log_group_id": test_log_group["id"],
            "log_id": test_log["id"],
        },
    },
    defined_tags={
        "Operations.CostCenter": "42",
    },
    description=model_deployment_description,
    display_name=model_deployment_display_name,
    freeform_tags={
        "Department": "Finance",
    },
    opc_parent_rpt_url=model_deployment_opc_parent_rpt_url)
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/datascience"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := datascience.NewModelDeployment(ctx, "test_model_deployment", &datascience.ModelDeploymentArgs{
			CompartmentId: pulumi.Any(compartmentId),
			ModelDeploymentConfigurationDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsArgs{
				DeploymentType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsDeploymentType),
				ModelConfigurationDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs{
					InstanceConfiguration: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs{
						InstanceShapeName: pulumi.Any(testShape.Name),
						ModelDeploymentInstanceShapeConfigDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs{
							CpuBaseline: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsCpuBaseline),
							MemoryInGbs: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsMemoryInGbs),
							Ocpus:       pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsOcpus),
						},
						PrivateEndpointId: pulumi.Any(testPrivateEndpoint.Id),
						SubnetId:          pulumi.Any(testSubnet.Id),
					},
					ModelId:              pulumi.Any(testModel.Id),
					BandwidthMbps:        pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsBandwidthMbps),
					MaximumBandwidthMbps: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsMaximumBandwidthMbps),
					ScalingPolicy: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs{
						PolicyType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyPolicyType),
						AutoScalingPolicies: datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArray{
							&datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs{
								AutoScalingPolicyType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesAutoScalingPolicyType),
								InitialInstanceCount:  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesInitialInstanceCount),
								MaximumInstanceCount:  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMaximumInstanceCount),
								MinimumInstanceCount:  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMinimumInstanceCount),
								Rules: datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArray{
									&datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs{
										MetricExpressionRuleType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricExpressionRuleType),
										ScaleInConfiguration: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs{
											InstanceCountAdjustment:  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationInstanceCountAdjustment),
											PendingDuration:          pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationPendingDuration),
											Query:                    pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationQuery),
											ScalingConfigurationType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationScalingConfigurationType),
											Threshold:                pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationThreshold),
										},
										ScaleOutConfiguration: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs{
											InstanceCountAdjustment:  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationInstanceCountAdjustment),
											PendingDuration:          pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationPendingDuration),
											Query:                    pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationQuery),
											ScalingConfigurationType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationScalingConfigurationType),
											Threshold:                pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationThreshold),
										},
										MetricType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricType),
									},
								},
							},
						},
						CoolDownInSeconds: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyCoolDownInSeconds),
						InstanceCount:     pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyInstanceCount),
						IsEnabled:         pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyIsEnabled),
					},
				},
				EnvironmentConfigurationDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs{
					EnvironmentConfigurationType: pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentConfigurationType),
					Cmds:                         pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsCmd),
					Entrypoints:                  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEntrypoint),
					EnvironmentVariables:         pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentVariables),
					HealthCheckPort:              pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsHealthCheckPort),
					Image:                        pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImage),
					ImageDigest:                  pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImageDigest),
					ServerPort:                   pulumi.Any(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsServerPort),
				},
			},
			ProjectId: pulumi.Any(testProject.Id),
			CategoryLogDetails: &datascience.ModelDeploymentCategoryLogDetailsArgs{
				Access: &datascience.ModelDeploymentCategoryLogDetailsAccessArgs{
					LogGroupId: pulumi.Any(testLogGroup.Id),
					LogId:      pulumi.Any(testLog.Id),
				},
				Predict: &datascience.ModelDeploymentCategoryLogDetailsPredictArgs{
					LogGroupId: pulumi.Any(testLogGroup.Id),
					LogId:      pulumi.Any(testLog.Id),
				},
			},
			DefinedTags: pulumi.StringMap{
				"Operations.CostCenter": pulumi.String("42"),
			},
			Description: pulumi.Any(modelDeploymentDescription),
			DisplayName: pulumi.Any(modelDeploymentDisplayName),
			FreeformTags: pulumi.StringMap{
				"Department": pulumi.String("Finance"),
			},
			OpcParentRptUrl: pulumi.Any(modelDeploymentOpcParentRptUrl),
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModelDeployment = new Oci.DataScience.ModelDeployment("test_model_deployment", new()
    {
        CompartmentId = compartmentId,
        ModelDeploymentConfigurationDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsArgs
        {
            DeploymentType = modelDeploymentModelDeploymentConfigurationDetailsDeploymentType,
            ModelConfigurationDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs
            {
                InstanceConfiguration = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs
                {
                    InstanceShapeName = testShape.Name,
                    ModelDeploymentInstanceShapeConfigDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs
                    {
                        CpuBaseline = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsCpuBaseline,
                        MemoryInGbs = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsMemoryInGbs,
                        Ocpus = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsOcpus,
                    },
                    PrivateEndpointId = testPrivateEndpoint.Id,
                    SubnetId = testSubnet.Id,
                },
                ModelId = testModel.Id,
                BandwidthMbps = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsBandwidthMbps,
                MaximumBandwidthMbps = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsMaximumBandwidthMbps,
                ScalingPolicy = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs
                {
                    PolicyType = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyPolicyType,
                    AutoScalingPolicies = new[]
                    {
                        new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs
                        {
                            AutoScalingPolicyType = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesAutoScalingPolicyType,
                            InitialInstanceCount = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesInitialInstanceCount,
                            MaximumInstanceCount = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMaximumInstanceCount,
                            MinimumInstanceCount = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMinimumInstanceCount,
                            Rules = new[]
                            {
                                new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs
                                {
                                    MetricExpressionRuleType = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricExpressionRuleType,
                                    ScaleInConfiguration = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs
                                    {
                                        InstanceCountAdjustment = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationInstanceCountAdjustment,
                                        PendingDuration = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationPendingDuration,
                                        Query = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationQuery,
                                        ScalingConfigurationType = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationScalingConfigurationType,
                                        Threshold = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationThreshold,
                                    },
                                    ScaleOutConfiguration = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs
                                    {
                                        InstanceCountAdjustment = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationInstanceCountAdjustment,
                                        PendingDuration = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationPendingDuration,
                                        Query = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationQuery,
                                        ScalingConfigurationType = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationScalingConfigurationType,
                                        Threshold = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationThreshold,
                                    },
                                    MetricType = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricType,
                                },
                            },
                        },
                    },
                    CoolDownInSeconds = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyCoolDownInSeconds,
                    InstanceCount = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyInstanceCount,
                    IsEnabled = modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyIsEnabled,
                },
            },
            EnvironmentConfigurationDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs
            {
                EnvironmentConfigurationType = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentConfigurationType,
                Cmds = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsCmd,
                Entrypoints = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEntrypoint,
                EnvironmentVariables = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentVariables,
                HealthCheckPort = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsHealthCheckPort,
                Image = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImage,
                ImageDigest = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImageDigest,
                ServerPort = modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsServerPort,
            },
        },
        ProjectId = testProject.Id,
        CategoryLogDetails = new Oci.DataScience.Inputs.ModelDeploymentCategoryLogDetailsArgs
        {
            Access = new Oci.DataScience.Inputs.ModelDeploymentCategoryLogDetailsAccessArgs
            {
                LogGroupId = testLogGroup.Id,
                LogId = testLog.Id,
            },
            Predict = new Oci.DataScience.Inputs.ModelDeploymentCategoryLogDetailsPredictArgs
            {
                LogGroupId = testLogGroup.Id,
                LogId = testLog.Id,
            },
        },
        DefinedTags = 
        {
            { "Operations.CostCenter", "42" },
        },
        Description = modelDeploymentDescription,
        DisplayName = modelDeploymentDisplayName,
        FreeformTags = 
        {
            { "Department", "Finance" },
        },
        OpcParentRptUrl = modelDeploymentOpcParentRptUrl,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.DataScience.ModelDeployment;
import com.pulumi.oci.DataScience.ModelDeploymentArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentModelDeploymentConfigurationDetailsArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentCategoryLogDetailsArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentCategoryLogDetailsAccessArgs;
import com.pulumi.oci.DataScience.inputs.ModelDeploymentCategoryLogDetailsPredictArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var testModelDeployment = new ModelDeployment("testModelDeployment", ModelDeploymentArgs.builder()
            .compartmentId(compartmentId)
            .modelDeploymentConfigurationDetails(ModelDeploymentModelDeploymentConfigurationDetailsArgs.builder()
                .deploymentType(modelDeploymentModelDeploymentConfigurationDetailsDeploymentType)
                .modelConfigurationDetails(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs.builder()
                    .instanceConfiguration(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs.builder()
                        .instanceShapeName(testShape.name())
                        .modelDeploymentInstanceShapeConfigDetails(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs.builder()
                            .cpuBaseline(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsCpuBaseline)
                            .memoryInGbs(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsMemoryInGbs)
                            .ocpus(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsOcpus)
                            .build())
                        .privateEndpointId(testPrivateEndpoint.id())
                        .subnetId(testSubnet.id())
                        .build())
                    .modelId(testModel.id())
                    .bandwidthMbps(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsBandwidthMbps)
                    .maximumBandwidthMbps(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsMaximumBandwidthMbps)
                    .scalingPolicy(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs.builder()
                        .policyType(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyPolicyType)
                        .autoScalingPolicies(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs.builder()
                            .autoScalingPolicyType(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesAutoScalingPolicyType)
                            .initialInstanceCount(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesInitialInstanceCount)
                            .maximumInstanceCount(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMaximumInstanceCount)
                            .minimumInstanceCount(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMinimumInstanceCount)
                            .rules(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs.builder()
                                .metricExpressionRuleType(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricExpressionRuleType)
                                .scaleInConfiguration(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs.builder()
                                    .instanceCountAdjustment(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationInstanceCountAdjustment)
                                    .pendingDuration(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationPendingDuration)
                                    .query(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationQuery)
                                    .scalingConfigurationType(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationScalingConfigurationType)
                                    .threshold(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationThreshold)
                                    .build())
                                .scaleOutConfiguration(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs.builder()
                                    .instanceCountAdjustment(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationInstanceCountAdjustment)
                                    .pendingDuration(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationPendingDuration)
                                    .query(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationQuery)
                                    .scalingConfigurationType(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationScalingConfigurationType)
                                    .threshold(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationThreshold)
                                    .build())
                                .metricType(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricType)
                                .build())
                            .build())
                        .coolDownInSeconds(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyCoolDownInSeconds)
                        .instanceCount(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyInstanceCount)
                        .isEnabled(modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyIsEnabled)
                        .build())
                    .build())
                .environmentConfigurationDetails(ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs.builder()
                    .environmentConfigurationType(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentConfigurationType)
                    .cmds(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsCmd)
                    .entrypoints(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEntrypoint)
                    .environmentVariables(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentVariables)
                    .healthCheckPort(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsHealthCheckPort)
                    .image(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImage)
                    .imageDigest(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImageDigest)
                    .serverPort(modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsServerPort)
                    .build())
                .build())
            .projectId(testProject.id())
            .categoryLogDetails(ModelDeploymentCategoryLogDetailsArgs.builder()
                .access(ModelDeploymentCategoryLogDetailsAccessArgs.builder()
                    .logGroupId(testLogGroup.id())
                    .logId(testLog.id())
                    .build())
                .predict(ModelDeploymentCategoryLogDetailsPredictArgs.builder()
                    .logGroupId(testLogGroup.id())
                    .logId(testLog.id())
                    .build())
                .build())
            .definedTags(Map.of("Operations.CostCenter", "42"))
            .description(modelDeploymentDescription)
            .displayName(modelDeploymentDisplayName)
            .freeformTags(Map.of("Department", "Finance"))
            .opcParentRptUrl(modelDeploymentOpcParentRptUrl)
            .build());
    }
}
resources:
  testModelDeployment:
    type: oci:DataScience:ModelDeployment
    name: test_model_deployment
    properties:
      compartmentId: ${compartmentId}
      modelDeploymentConfigurationDetails:
        deploymentType: ${modelDeploymentModelDeploymentConfigurationDetailsDeploymentType}
        modelConfigurationDetails:
          instanceConfiguration:
            instanceShapeName: ${testShape.name}
            modelDeploymentInstanceShapeConfigDetails:
              cpuBaseline: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsCpuBaseline}
              memoryInGbs: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsMemoryInGbs}
              ocpus: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsOcpus}
            privateEndpointId: ${testPrivateEndpoint.id}
            subnetId: ${testSubnet.id}
          modelId: ${testModel.id}
          bandwidthMbps: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsBandwidthMbps}
          maximumBandwidthMbps: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsMaximumBandwidthMbps}
          scalingPolicy:
            policyType: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyPolicyType}
            autoScalingPolicies:
              - autoScalingPolicyType: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesAutoScalingPolicyType}
                initialInstanceCount: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesInitialInstanceCount}
                maximumInstanceCount: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMaximumInstanceCount}
                minimumInstanceCount: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesMinimumInstanceCount}
                rules:
                  - metricExpressionRuleType: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricExpressionRuleType}
                    scaleInConfiguration:
                      instanceCountAdjustment: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationInstanceCountAdjustment}
                      pendingDuration: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationPendingDuration}
                      query: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationQuery}
                      scalingConfigurationType: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationScalingConfigurationType}
                      threshold: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleInConfigurationThreshold}
                    scaleOutConfiguration:
                      instanceCountAdjustment: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationInstanceCountAdjustment}
                      pendingDuration: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationPendingDuration}
                      query: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationQuery}
                      scalingConfigurationType: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationScalingConfigurationType}
                      threshold: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesScaleOutConfigurationThreshold}
                    metricType: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPoliciesRulesMetricType}
            coolDownInSeconds: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyCoolDownInSeconds}
            instanceCount: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyInstanceCount}
            isEnabled: ${modelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyIsEnabled}
        environmentConfigurationDetails:
          environmentConfigurationType: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentConfigurationType}
          cmds: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsCmd}
          entrypoints: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEntrypoint}
          environmentVariables: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsEnvironmentVariables}
          healthCheckPort: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsHealthCheckPort}
          image: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImage}
          imageDigest: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsImageDigest}
          serverPort: ${modelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsServerPort}
      projectId: ${testProject.id}
      categoryLogDetails:
        access:
          logGroupId: ${testLogGroup.id}
          logId: ${testLog.id}
        predict:
          logGroupId: ${testLogGroup.id}
          logId: ${testLog.id}
      definedTags:
        Operations.CostCenter: '42'
      description: ${modelDeploymentDescription}
      displayName: ${modelDeploymentDisplayName}
      freeformTags:
        Department: Finance
      opcParentRptUrl: ${modelDeploymentOpcParentRptUrl}
Create ModelDeployment Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new ModelDeployment(name: string, args: ModelDeploymentArgs, opts?: CustomResourceOptions);@overload
def ModelDeployment(resource_name: str,
                    args: ModelDeploymentArgs,
                    opts: Optional[ResourceOptions] = None)
@overload
def ModelDeployment(resource_name: str,
                    opts: Optional[ResourceOptions] = None,
                    compartment_id: Optional[str] = None,
                    model_deployment_configuration_details: Optional[ModelDeploymentModelDeploymentConfigurationDetailsArgs] = None,
                    project_id: Optional[str] = None,
                    category_log_details: Optional[ModelDeploymentCategoryLogDetailsArgs] = None,
                    defined_tags: Optional[Mapping[str, str]] = None,
                    description: Optional[str] = None,
                    display_name: Optional[str] = None,
                    freeform_tags: Optional[Mapping[str, str]] = None,
                    opc_parent_rpt_url: Optional[str] = None,
                    state: Optional[str] = None)func NewModelDeployment(ctx *Context, name string, args ModelDeploymentArgs, opts ...ResourceOption) (*ModelDeployment, error)public ModelDeployment(string name, ModelDeploymentArgs args, CustomResourceOptions? opts = null)
public ModelDeployment(String name, ModelDeploymentArgs args)
public ModelDeployment(String name, ModelDeploymentArgs args, CustomResourceOptions options)
type: oci:DataScience:ModelDeployment
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args ModelDeploymentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args ModelDeploymentArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args ModelDeploymentArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args ModelDeploymentArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args ModelDeploymentArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var modelDeploymentResource = new Oci.DataScience.ModelDeployment("modelDeploymentResource", new()
{
    CompartmentId = "string",
    ModelDeploymentConfigurationDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsArgs
    {
        DeploymentType = "string",
        ModelConfigurationDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs
        {
            InstanceConfiguration = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs
            {
                InstanceShapeName = "string",
                ModelDeploymentInstanceShapeConfigDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs
                {
                    CpuBaseline = "string",
                    MemoryInGbs = 0,
                    Ocpus = 0,
                },
                PrivateEndpointId = "string",
                SubnetId = "string",
            },
            ModelId = "string",
            BandwidthMbps = 0,
            MaximumBandwidthMbps = 0,
            ScalingPolicy = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs
            {
                PolicyType = "string",
                AutoScalingPolicies = new[]
                {
                    new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs
                    {
                        AutoScalingPolicyType = "string",
                        InitialInstanceCount = 0,
                        MaximumInstanceCount = 0,
                        MinimumInstanceCount = 0,
                        Rules = new[]
                        {
                            new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs
                            {
                                MetricExpressionRuleType = "string",
                                ScaleInConfiguration = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs
                                {
                                    InstanceCountAdjustment = 0,
                                    PendingDuration = "string",
                                    Query = "string",
                                    ScalingConfigurationType = "string",
                                    Threshold = 0,
                                },
                                ScaleOutConfiguration = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs
                                {
                                    InstanceCountAdjustment = 0,
                                    PendingDuration = "string",
                                    Query = "string",
                                    ScalingConfigurationType = "string",
                                    Threshold = 0,
                                },
                                MetricType = "string",
                            },
                        },
                    },
                },
                CoolDownInSeconds = 0,
                InstanceCount = 0,
                IsEnabled = false,
            },
        },
        EnvironmentConfigurationDetails = new Oci.DataScience.Inputs.ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs
        {
            EnvironmentConfigurationType = "string",
            Cmds = new[]
            {
                "string",
            },
            Entrypoints = new[]
            {
                "string",
            },
            EnvironmentVariables = 
            {
                { "string", "string" },
            },
            HealthCheckPort = 0,
            Image = "string",
            ImageDigest = "string",
            ServerPort = 0,
        },
    },
    ProjectId = "string",
    CategoryLogDetails = new Oci.DataScience.Inputs.ModelDeploymentCategoryLogDetailsArgs
    {
        Access = new Oci.DataScience.Inputs.ModelDeploymentCategoryLogDetailsAccessArgs
        {
            LogGroupId = "string",
            LogId = "string",
        },
        Predict = new Oci.DataScience.Inputs.ModelDeploymentCategoryLogDetailsPredictArgs
        {
            LogGroupId = "string",
            LogId = "string",
        },
    },
    DefinedTags = 
    {
        { "string", "string" },
    },
    Description = "string",
    DisplayName = "string",
    FreeformTags = 
    {
        { "string", "string" },
    },
    OpcParentRptUrl = "string",
    State = "string",
});
example, err := datascience.NewModelDeployment(ctx, "modelDeploymentResource", &datascience.ModelDeploymentArgs{
	CompartmentId: pulumi.String("string"),
	ModelDeploymentConfigurationDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsArgs{
		DeploymentType: pulumi.String("string"),
		ModelConfigurationDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs{
			InstanceConfiguration: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs{
				InstanceShapeName: pulumi.String("string"),
				ModelDeploymentInstanceShapeConfigDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs{
					CpuBaseline: pulumi.String("string"),
					MemoryInGbs: pulumi.Float64(0),
					Ocpus:       pulumi.Float64(0),
				},
				PrivateEndpointId: pulumi.String("string"),
				SubnetId:          pulumi.String("string"),
			},
			ModelId:              pulumi.String("string"),
			BandwidthMbps:        pulumi.Int(0),
			MaximumBandwidthMbps: pulumi.Int(0),
			ScalingPolicy: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs{
				PolicyType: pulumi.String("string"),
				AutoScalingPolicies: datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArray{
					&datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs{
						AutoScalingPolicyType: pulumi.String("string"),
						InitialInstanceCount:  pulumi.Int(0),
						MaximumInstanceCount:  pulumi.Int(0),
						MinimumInstanceCount:  pulumi.Int(0),
						Rules: datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArray{
							&datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs{
								MetricExpressionRuleType: pulumi.String("string"),
								ScaleInConfiguration: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs{
									InstanceCountAdjustment:  pulumi.Int(0),
									PendingDuration:          pulumi.String("string"),
									Query:                    pulumi.String("string"),
									ScalingConfigurationType: pulumi.String("string"),
									Threshold:                pulumi.Int(0),
								},
								ScaleOutConfiguration: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs{
									InstanceCountAdjustment:  pulumi.Int(0),
									PendingDuration:          pulumi.String("string"),
									Query:                    pulumi.String("string"),
									ScalingConfigurationType: pulumi.String("string"),
									Threshold:                pulumi.Int(0),
								},
								MetricType: pulumi.String("string"),
							},
						},
					},
				},
				CoolDownInSeconds: pulumi.Int(0),
				InstanceCount:     pulumi.Int(0),
				IsEnabled:         pulumi.Bool(false),
			},
		},
		EnvironmentConfigurationDetails: &datascience.ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs{
			EnvironmentConfigurationType: pulumi.String("string"),
			Cmds: pulumi.StringArray{
				pulumi.String("string"),
			},
			Entrypoints: pulumi.StringArray{
				pulumi.String("string"),
			},
			EnvironmentVariables: pulumi.StringMap{
				"string": pulumi.String("string"),
			},
			HealthCheckPort: pulumi.Int(0),
			Image:           pulumi.String("string"),
			ImageDigest:     pulumi.String("string"),
			ServerPort:      pulumi.Int(0),
		},
	},
	ProjectId: pulumi.String("string"),
	CategoryLogDetails: &datascience.ModelDeploymentCategoryLogDetailsArgs{
		Access: &datascience.ModelDeploymentCategoryLogDetailsAccessArgs{
			LogGroupId: pulumi.String("string"),
			LogId:      pulumi.String("string"),
		},
		Predict: &datascience.ModelDeploymentCategoryLogDetailsPredictArgs{
			LogGroupId: pulumi.String("string"),
			LogId:      pulumi.String("string"),
		},
	},
	DefinedTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Description: pulumi.String("string"),
	DisplayName: pulumi.String("string"),
	FreeformTags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	OpcParentRptUrl: pulumi.String("string"),
	State:           pulumi.String("string"),
})
var modelDeploymentResource = new ModelDeployment("modelDeploymentResource", ModelDeploymentArgs.builder()
    .compartmentId("string")
    .modelDeploymentConfigurationDetails(ModelDeploymentModelDeploymentConfigurationDetailsArgs.builder()
        .deploymentType("string")
        .modelConfigurationDetails(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs.builder()
            .instanceConfiguration(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs.builder()
                .instanceShapeName("string")
                .modelDeploymentInstanceShapeConfigDetails(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs.builder()
                    .cpuBaseline("string")
                    .memoryInGbs(0.0)
                    .ocpus(0.0)
                    .build())
                .privateEndpointId("string")
                .subnetId("string")
                .build())
            .modelId("string")
            .bandwidthMbps(0)
            .maximumBandwidthMbps(0)
            .scalingPolicy(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs.builder()
                .policyType("string")
                .autoScalingPolicies(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs.builder()
                    .autoScalingPolicyType("string")
                    .initialInstanceCount(0)
                    .maximumInstanceCount(0)
                    .minimumInstanceCount(0)
                    .rules(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs.builder()
                        .metricExpressionRuleType("string")
                        .scaleInConfiguration(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs.builder()
                            .instanceCountAdjustment(0)
                            .pendingDuration("string")
                            .query("string")
                            .scalingConfigurationType("string")
                            .threshold(0)
                            .build())
                        .scaleOutConfiguration(ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs.builder()
                            .instanceCountAdjustment(0)
                            .pendingDuration("string")
                            .query("string")
                            .scalingConfigurationType("string")
                            .threshold(0)
                            .build())
                        .metricType("string")
                        .build())
                    .build())
                .coolDownInSeconds(0)
                .instanceCount(0)
                .isEnabled(false)
                .build())
            .build())
        .environmentConfigurationDetails(ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs.builder()
            .environmentConfigurationType("string")
            .cmds("string")
            .entrypoints("string")
            .environmentVariables(Map.of("string", "string"))
            .healthCheckPort(0)
            .image("string")
            .imageDigest("string")
            .serverPort(0)
            .build())
        .build())
    .projectId("string")
    .categoryLogDetails(ModelDeploymentCategoryLogDetailsArgs.builder()
        .access(ModelDeploymentCategoryLogDetailsAccessArgs.builder()
            .logGroupId("string")
            .logId("string")
            .build())
        .predict(ModelDeploymentCategoryLogDetailsPredictArgs.builder()
            .logGroupId("string")
            .logId("string")
            .build())
        .build())
    .definedTags(Map.of("string", "string"))
    .description("string")
    .displayName("string")
    .freeformTags(Map.of("string", "string"))
    .opcParentRptUrl("string")
    .state("string")
    .build());
model_deployment_resource = oci.data_science.ModelDeployment("modelDeploymentResource",
    compartment_id="string",
    model_deployment_configuration_details={
        "deployment_type": "string",
        "model_configuration_details": {
            "instance_configuration": {
                "instance_shape_name": "string",
                "model_deployment_instance_shape_config_details": {
                    "cpu_baseline": "string",
                    "memory_in_gbs": 0,
                    "ocpus": 0,
                },
                "private_endpoint_id": "string",
                "subnet_id": "string",
            },
            "model_id": "string",
            "bandwidth_mbps": 0,
            "maximum_bandwidth_mbps": 0,
            "scaling_policy": {
                "policy_type": "string",
                "auto_scaling_policies": [{
                    "auto_scaling_policy_type": "string",
                    "initial_instance_count": 0,
                    "maximum_instance_count": 0,
                    "minimum_instance_count": 0,
                    "rules": [{
                        "metric_expression_rule_type": "string",
                        "scale_in_configuration": {
                            "instance_count_adjustment": 0,
                            "pending_duration": "string",
                            "query": "string",
                            "scaling_configuration_type": "string",
                            "threshold": 0,
                        },
                        "scale_out_configuration": {
                            "instance_count_adjustment": 0,
                            "pending_duration": "string",
                            "query": "string",
                            "scaling_configuration_type": "string",
                            "threshold": 0,
                        },
                        "metric_type": "string",
                    }],
                }],
                "cool_down_in_seconds": 0,
                "instance_count": 0,
                "is_enabled": False,
            },
        },
        "environment_configuration_details": {
            "environment_configuration_type": "string",
            "cmds": ["string"],
            "entrypoints": ["string"],
            "environment_variables": {
                "string": "string",
            },
            "health_check_port": 0,
            "image": "string",
            "image_digest": "string",
            "server_port": 0,
        },
    },
    project_id="string",
    category_log_details={
        "access": {
            "log_group_id": "string",
            "log_id": "string",
        },
        "predict": {
            "log_group_id": "string",
            "log_id": "string",
        },
    },
    defined_tags={
        "string": "string",
    },
    description="string",
    display_name="string",
    freeform_tags={
        "string": "string",
    },
    opc_parent_rpt_url="string",
    state="string")
const modelDeploymentResource = new oci.datascience.ModelDeployment("modelDeploymentResource", {
    compartmentId: "string",
    modelDeploymentConfigurationDetails: {
        deploymentType: "string",
        modelConfigurationDetails: {
            instanceConfiguration: {
                instanceShapeName: "string",
                modelDeploymentInstanceShapeConfigDetails: {
                    cpuBaseline: "string",
                    memoryInGbs: 0,
                    ocpus: 0,
                },
                privateEndpointId: "string",
                subnetId: "string",
            },
            modelId: "string",
            bandwidthMbps: 0,
            maximumBandwidthMbps: 0,
            scalingPolicy: {
                policyType: "string",
                autoScalingPolicies: [{
                    autoScalingPolicyType: "string",
                    initialInstanceCount: 0,
                    maximumInstanceCount: 0,
                    minimumInstanceCount: 0,
                    rules: [{
                        metricExpressionRuleType: "string",
                        scaleInConfiguration: {
                            instanceCountAdjustment: 0,
                            pendingDuration: "string",
                            query: "string",
                            scalingConfigurationType: "string",
                            threshold: 0,
                        },
                        scaleOutConfiguration: {
                            instanceCountAdjustment: 0,
                            pendingDuration: "string",
                            query: "string",
                            scalingConfigurationType: "string",
                            threshold: 0,
                        },
                        metricType: "string",
                    }],
                }],
                coolDownInSeconds: 0,
                instanceCount: 0,
                isEnabled: false,
            },
        },
        environmentConfigurationDetails: {
            environmentConfigurationType: "string",
            cmds: ["string"],
            entrypoints: ["string"],
            environmentVariables: {
                string: "string",
            },
            healthCheckPort: 0,
            image: "string",
            imageDigest: "string",
            serverPort: 0,
        },
    },
    projectId: "string",
    categoryLogDetails: {
        access: {
            logGroupId: "string",
            logId: "string",
        },
        predict: {
            logGroupId: "string",
            logId: "string",
        },
    },
    definedTags: {
        string: "string",
    },
    description: "string",
    displayName: "string",
    freeformTags: {
        string: "string",
    },
    opcParentRptUrl: "string",
    state: "string",
});
type: oci:DataScience:ModelDeployment
properties:
    categoryLogDetails:
        access:
            logGroupId: string
            logId: string
        predict:
            logGroupId: string
            logId: string
    compartmentId: string
    definedTags:
        string: string
    description: string
    displayName: string
    freeformTags:
        string: string
    modelDeploymentConfigurationDetails:
        deploymentType: string
        environmentConfigurationDetails:
            cmds:
                - string
            entrypoints:
                - string
            environmentConfigurationType: string
            environmentVariables:
                string: string
            healthCheckPort: 0
            image: string
            imageDigest: string
            serverPort: 0
        modelConfigurationDetails:
            bandwidthMbps: 0
            instanceConfiguration:
                instanceShapeName: string
                modelDeploymentInstanceShapeConfigDetails:
                    cpuBaseline: string
                    memoryInGbs: 0
                    ocpus: 0
                privateEndpointId: string
                subnetId: string
            maximumBandwidthMbps: 0
            modelId: string
            scalingPolicy:
                autoScalingPolicies:
                    - autoScalingPolicyType: string
                      initialInstanceCount: 0
                      maximumInstanceCount: 0
                      minimumInstanceCount: 0
                      rules:
                        - metricExpressionRuleType: string
                          metricType: string
                          scaleInConfiguration:
                            instanceCountAdjustment: 0
                            pendingDuration: string
                            query: string
                            scalingConfigurationType: string
                            threshold: 0
                          scaleOutConfiguration:
                            instanceCountAdjustment: 0
                            pendingDuration: string
                            query: string
                            scalingConfigurationType: string
                            threshold: 0
                coolDownInSeconds: 0
                instanceCount: 0
                isEnabled: false
                policyType: string
    opcParentRptUrl: string
    projectId: string
    state: string
ModelDeployment Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The ModelDeployment resource accepts the following input properties:
- CompartmentId string
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- ModelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details 
- (Updatable) The model deployment configuration details.
- ProjectId string
- The OCID of the project to associate with the model deployment.
- CategoryLog ModelDetails Deployment Category Log Details 
- (Updatable) The log details for each category.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model deployment.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Dictionary<string, string>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- OpcParent stringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- State string
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- CompartmentId string
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- ModelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details Args 
- (Updatable) The model deployment configuration details.
- ProjectId string
- The OCID of the project to associate with the model deployment.
- CategoryLog ModelDetails Deployment Category Log Details Args 
- (Updatable) The log details for each category.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model deployment.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- map[string]string
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- OpcParent stringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- State string
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- compartmentId String
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- modelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details 
- (Updatable) The model deployment configuration details.
- projectId String
- The OCID of the project to associate with the model deployment.
- categoryLog ModelDetails Deployment Category Log Details 
- (Updatable) The log details for each category.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model deployment.
- displayName String
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Map<String,String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- opcParent StringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- state String
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- compartmentId string
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- modelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details 
- (Updatable) The model deployment configuration details.
- projectId string
- The OCID of the project to associate with the model deployment.
- categoryLog ModelDetails Deployment Category Log Details 
- (Updatable) The log details for each category.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description string
- (Updatable) A short description of the model deployment.
- displayName string
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- {[key: string]: string}
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- opcParent stringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- state string
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- compartment_id str
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- model_deployment_ Modelconfiguration_ details Deployment Model Deployment Configuration Details Args 
- (Updatable) The model deployment configuration details.
- project_id str
- The OCID of the project to associate with the model deployment.
- category_log_ Modeldetails Deployment Category Log Details Args 
- (Updatable) The log details for each category.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description str
- (Updatable) A short description of the model deployment.
- display_name str
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Mapping[str, str]
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- opc_parent_ strrpt_ url 
- URL to fetch the Resource Principal Token from the parent resource.
- state str
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- compartmentId String
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- modelDeployment Property MapConfiguration Details 
- (Updatable) The model deployment configuration details.
- projectId String
- The OCID of the project to associate with the model deployment.
- categoryLog Property MapDetails 
- (Updatable) The log details for each category.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model deployment.
- displayName String
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Map<String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- opcParent StringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- state String
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
Outputs
All input properties are implicitly available as output properties. Additionally, the ModelDeployment resource produces the following output properties:
- CreatedBy string
- The OCID of the user who created the model deployment.
- Id string
- The provider-assigned unique ID for this managed resource.
- LifecycleDetails string
- Details about the state of the model deployment.
- ModelDeployment List<ModelSystem Datas Deployment Model Deployment System Data> 
- Model deployment system data.
- ModelDeployment stringUrl 
- The URL to interact with the model deployment.
- TimeCreated string
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- CreatedBy string
- The OCID of the user who created the model deployment.
- Id string
- The provider-assigned unique ID for this managed resource.
- LifecycleDetails string
- Details about the state of the model deployment.
- ModelDeployment []ModelSystem Datas Deployment Model Deployment System Data 
- Model deployment system data.
- ModelDeployment stringUrl 
- The URL to interact with the model deployment.
- TimeCreated string
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- createdBy String
- The OCID of the user who created the model deployment.
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails String
- Details about the state of the model deployment.
- modelDeployment List<ModelSystem Datas Deployment Model Deployment System Data> 
- Model deployment system data.
- modelDeployment StringUrl 
- The URL to interact with the model deployment.
- timeCreated String
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- createdBy string
- The OCID of the user who created the model deployment.
- id string
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails string
- Details about the state of the model deployment.
- modelDeployment ModelSystem Datas Deployment Model Deployment System Data[] 
- Model deployment system data.
- modelDeployment stringUrl 
- The URL to interact with the model deployment.
- timeCreated string
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- created_by str
- The OCID of the user who created the model deployment.
- id str
- The provider-assigned unique ID for this managed resource.
- lifecycle_details str
- Details about the state of the model deployment.
- model_deployment_ Sequence[Modelsystem_ datas Deployment Model Deployment System Data] 
- Model deployment system data.
- model_deployment_ strurl 
- The URL to interact with the model deployment.
- time_created str
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- createdBy String
- The OCID of the user who created the model deployment.
- id String
- The provider-assigned unique ID for this managed resource.
- lifecycleDetails String
- Details about the state of the model deployment.
- modelDeployment List<Property Map>System Datas 
- Model deployment system data.
- modelDeployment StringUrl 
- The URL to interact with the model deployment.
- timeCreated String
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
Look up Existing ModelDeployment Resource
Get an existing ModelDeployment resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: ModelDeploymentState, opts?: CustomResourceOptions): ModelDeployment@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        category_log_details: Optional[ModelDeploymentCategoryLogDetailsArgs] = None,
        compartment_id: Optional[str] = None,
        created_by: Optional[str] = None,
        defined_tags: Optional[Mapping[str, str]] = None,
        description: Optional[str] = None,
        display_name: Optional[str] = None,
        freeform_tags: Optional[Mapping[str, str]] = None,
        lifecycle_details: Optional[str] = None,
        model_deployment_configuration_details: Optional[ModelDeploymentModelDeploymentConfigurationDetailsArgs] = None,
        model_deployment_system_datas: Optional[Sequence[ModelDeploymentModelDeploymentSystemDataArgs]] = None,
        model_deployment_url: Optional[str] = None,
        opc_parent_rpt_url: Optional[str] = None,
        project_id: Optional[str] = None,
        state: Optional[str] = None,
        time_created: Optional[str] = None) -> ModelDeploymentfunc GetModelDeployment(ctx *Context, name string, id IDInput, state *ModelDeploymentState, opts ...ResourceOption) (*ModelDeployment, error)public static ModelDeployment Get(string name, Input<string> id, ModelDeploymentState? state, CustomResourceOptions? opts = null)public static ModelDeployment get(String name, Output<String> id, ModelDeploymentState state, CustomResourceOptions options)resources:  _:    type: oci:DataScience:ModelDeployment    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- CategoryLog ModelDetails Deployment Category Log Details 
- (Updatable) The log details for each category.
- CompartmentId string
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- CreatedBy string
- The OCID of the user who created the model deployment.
- Dictionary<string, string>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model deployment.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Dictionary<string, string>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- LifecycleDetails string
- Details about the state of the model deployment.
- ModelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details 
- (Updatable) The model deployment configuration details.
- ModelDeployment List<ModelSystem Datas Deployment Model Deployment System Data> 
- Model deployment system data.
- ModelDeployment stringUrl 
- The URL to interact with the model deployment.
- OpcParent stringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- ProjectId string
- The OCID of the project to associate with the model deployment.
- State string
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- TimeCreated string
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- CategoryLog ModelDetails Deployment Category Log Details Args 
- (Updatable) The log details for each category.
- CompartmentId string
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- CreatedBy string
- The OCID of the user who created the model deployment.
- map[string]string
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- Description string
- (Updatable) A short description of the model deployment.
- DisplayName string
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- map[string]string
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- LifecycleDetails string
- Details about the state of the model deployment.
- ModelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details Args 
- (Updatable) The model deployment configuration details.
- ModelDeployment []ModelSystem Datas Deployment Model Deployment System Data Args 
- Model deployment system data.
- ModelDeployment stringUrl 
- The URL to interact with the model deployment.
- OpcParent stringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- ProjectId string
- The OCID of the project to associate with the model deployment.
- State string
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- TimeCreated string
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- categoryLog ModelDetails Deployment Category Log Details 
- (Updatable) The log details for each category.
- compartmentId String
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- createdBy String
- The OCID of the user who created the model deployment.
- Map<String,String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model deployment.
- displayName String
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Map<String,String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- lifecycleDetails String
- Details about the state of the model deployment.
- modelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details 
- (Updatable) The model deployment configuration details.
- modelDeployment List<ModelSystem Datas Deployment Model Deployment System Data> 
- Model deployment system data.
- modelDeployment StringUrl 
- The URL to interact with the model deployment.
- opcParent StringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- projectId String
- The OCID of the project to associate with the model deployment.
- state String
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- timeCreated String
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- categoryLog ModelDetails Deployment Category Log Details 
- (Updatable) The log details for each category.
- compartmentId string
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- createdBy string
- The OCID of the user who created the model deployment.
- {[key: string]: string}
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description string
- (Updatable) A short description of the model deployment.
- displayName string
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- {[key: string]: string}
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- lifecycleDetails string
- Details about the state of the model deployment.
- modelDeployment ModelConfiguration Details Deployment Model Deployment Configuration Details 
- (Updatable) The model deployment configuration details.
- modelDeployment ModelSystem Datas Deployment Model Deployment System Data[] 
- Model deployment system data.
- modelDeployment stringUrl 
- The URL to interact with the model deployment.
- opcParent stringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- projectId string
- The OCID of the project to associate with the model deployment.
- state string
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- timeCreated string
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- category_log_ Modeldetails Deployment Category Log Details Args 
- (Updatable) The log details for each category.
- compartment_id str
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- created_by str
- The OCID of the user who created the model deployment.
- Mapping[str, str]
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description str
- (Updatable) A short description of the model deployment.
- display_name str
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Mapping[str, str]
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- lifecycle_details str
- Details about the state of the model deployment.
- model_deployment_ Modelconfiguration_ details Deployment Model Deployment Configuration Details Args 
- (Updatable) The model deployment configuration details.
- model_deployment_ Sequence[Modelsystem_ datas Deployment Model Deployment System Data Args] 
- Model deployment system data.
- model_deployment_ strurl 
- The URL to interact with the model deployment.
- opc_parent_ strrpt_ url 
- URL to fetch the Resource Principal Token from the parent resource.
- project_id str
- The OCID of the project to associate with the model deployment.
- state str
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- time_created str
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
- categoryLog Property MapDetails 
- (Updatable) The log details for each category.
- compartmentId String
- (Updatable) The OCID of the compartment where you want to create the model deployment.
- createdBy String
- The OCID of the user who created the model deployment.
- Map<String>
- (Updatable) Defined tags for this resource. Each key is predefined and scoped to a namespace. See Resource Tags. Example: {"Operations.CostCenter": "42"}
- description String
- (Updatable) A short description of the model deployment.
- displayName String
- (Updatable) A user-friendly display name for the resource. Does not have to be unique, and can be modified. Avoid entering confidential information. Example: My ModelDeployment
- Map<String>
- (Updatable) Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. See Resource Tags. Example: {"Department": "Finance"}
- lifecycleDetails String
- Details about the state of the model deployment.
- modelDeployment Property MapConfiguration Details 
- (Updatable) The model deployment configuration details.
- modelDeployment List<Property Map>System Datas 
- Model deployment system data.
- modelDeployment StringUrl 
- The URL to interact with the model deployment.
- opcParent StringRpt Url 
- URL to fetch the Resource Principal Token from the parent resource.
- projectId String
- The OCID of the project to associate with the model deployment.
- state String
- (Updatable) The target state for the Model Deployment. Could be set to - ACTIVEor- INACTIVE.- ** IMPORTANT ** Any change to a property that does not support update will force the destruction and recreation of the resource with the new property values 
- timeCreated String
- The date and time the resource was created, in the timestamp format defined by RFC3339. Example: 2019-08-25T21:10:29.41Z
Supporting Types
ModelDeploymentCategoryLogDetails, ModelDeploymentCategoryLogDetailsArgs          
- Access
ModelDeployment Category Log Details Access 
- (Updatable) The log details.
- Predict
ModelDeployment Category Log Details Predict 
- (Updatable) The log details.
- Access
ModelDeployment Category Log Details Access 
- (Updatable) The log details.
- Predict
ModelDeployment Category Log Details Predict 
- (Updatable) The log details.
- access
ModelDeployment Category Log Details Access 
- (Updatable) The log details.
- predict
ModelDeployment Category Log Details Predict 
- (Updatable) The log details.
- access
ModelDeployment Category Log Details Access 
- (Updatable) The log details.
- predict
ModelDeployment Category Log Details Predict 
- (Updatable) The log details.
- access
ModelDeployment Category Log Details Access 
- (Updatable) The log details.
- predict
ModelDeployment Category Log Details Predict 
- (Updatable) The log details.
- access Property Map
- (Updatable) The log details.
- predict Property Map
- (Updatable) The log details.
ModelDeploymentCategoryLogDetailsAccess, ModelDeploymentCategoryLogDetailsAccessArgs            
- LogGroup stringId 
- (Updatable) The OCID of a log group to work with.
- LogId string
- (Updatable) The OCID of a log to work with.
- LogGroup stringId 
- (Updatable) The OCID of a log group to work with.
- LogId string
- (Updatable) The OCID of a log to work with.
- logGroup StringId 
- (Updatable) The OCID of a log group to work with.
- logId String
- (Updatable) The OCID of a log to work with.
- logGroup stringId 
- (Updatable) The OCID of a log group to work with.
- logId string
- (Updatable) The OCID of a log to work with.
- log_group_ strid 
- (Updatable) The OCID of a log group to work with.
- log_id str
- (Updatable) The OCID of a log to work with.
- logGroup StringId 
- (Updatable) The OCID of a log group to work with.
- logId String
- (Updatable) The OCID of a log to work with.
ModelDeploymentCategoryLogDetailsPredict, ModelDeploymentCategoryLogDetailsPredictArgs            
- LogGroup stringId 
- (Updatable) The OCID of a log group to work with.
- LogId string
- (Updatable) The OCID of a log to work with.
- LogGroup stringId 
- (Updatable) The OCID of a log group to work with.
- LogId string
- (Updatable) The OCID of a log to work with.
- logGroup StringId 
- (Updatable) The OCID of a log group to work with.
- logId String
- (Updatable) The OCID of a log to work with.
- logGroup stringId 
- (Updatable) The OCID of a log group to work with.
- logId string
- (Updatable) The OCID of a log to work with.
- log_group_ strid 
- (Updatable) The OCID of a log group to work with.
- log_id str
- (Updatable) The OCID of a log to work with.
- logGroup StringId 
- (Updatable) The OCID of a log group to work with.
- logId String
- (Updatable) The OCID of a log to work with.
ModelDeploymentModelDeploymentConfigurationDetails, ModelDeploymentModelDeploymentConfigurationDetailsArgs            
- DeploymentType string
- (Updatable) The type of the model deployment.
- ModelConfiguration ModelDetails Deployment Model Deployment Configuration Details Model Configuration Details 
- (Updatable) The model configuration details.
- EnvironmentConfiguration ModelDetails Deployment Model Deployment Configuration Details Environment Configuration Details 
- (Updatable) The configuration to carry the environment details thats used in Model Deployment creation
- DeploymentType string
- (Updatable) The type of the model deployment.
- ModelConfiguration ModelDetails Deployment Model Deployment Configuration Details Model Configuration Details 
- (Updatable) The model configuration details.
- EnvironmentConfiguration ModelDetails Deployment Model Deployment Configuration Details Environment Configuration Details 
- (Updatable) The configuration to carry the environment details thats used in Model Deployment creation
- deploymentType String
- (Updatable) The type of the model deployment.
- modelConfiguration ModelDetails Deployment Model Deployment Configuration Details Model Configuration Details 
- (Updatable) The model configuration details.
- environmentConfiguration ModelDetails Deployment Model Deployment Configuration Details Environment Configuration Details 
- (Updatable) The configuration to carry the environment details thats used in Model Deployment creation
- deploymentType string
- (Updatable) The type of the model deployment.
- modelConfiguration ModelDetails Deployment Model Deployment Configuration Details Model Configuration Details 
- (Updatable) The model configuration details.
- environmentConfiguration ModelDetails Deployment Model Deployment Configuration Details Environment Configuration Details 
- (Updatable) The configuration to carry the environment details thats used in Model Deployment creation
- deployment_type str
- (Updatable) The type of the model deployment.
- model_configuration_ Modeldetails Deployment Model Deployment Configuration Details Model Configuration Details 
- (Updatable) The model configuration details.
- environment_configuration_ Modeldetails Deployment Model Deployment Configuration Details Environment Configuration Details 
- (Updatable) The configuration to carry the environment details thats used in Model Deployment creation
- deploymentType String
- (Updatable) The type of the model deployment.
- modelConfiguration Property MapDetails 
- (Updatable) The model configuration details.
- environmentConfiguration Property MapDetails 
- (Updatable) The configuration to carry the environment details thats used in Model Deployment creation
ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetails, ModelDeploymentModelDeploymentConfigurationDetailsEnvironmentConfigurationDetailsArgs                  
- EnvironmentConfiguration stringType 
- (Updatable) The environment configuration type
- Cmds List<string>
- (Updatable) The container image run CMD as a list of strings. Use CMDas arguments to theENTRYPOINTor the only command to run in the absence of anENTRYPOINT. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes.
- Entrypoints List<string>
- (Updatable) The container image run ENTRYPOINT as a list of strings. Accept the CMDas extra arguments. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes. More information on howCMDandENTRYPOINTinteract are here.
- EnvironmentVariables Dictionary<string, string>
- (Updatable) Environment variables to set for the web server container. The size of envVars must be less than 2048 bytes. Key should be under 32 characters. Key should contain only letters, digits and underscore (_) Key should start with a letter. Key should have at least 2 characters. Key should not end with underscore eg. TEST_Key if added cannot be empty. Value can be empty. No specific size limits on individual Values. But overall environment variables is limited to 2048 bytes. Key can't be reserved Model Deployment environment variables.
- HealthCheck intPort 
- (Updatable) The port on which the container HEALTHCHECK would listen. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- Image string
- (Updatable) The full path to the Oracle Container Repository (OCIR) registry, image, and tag in a canonical format. Acceptable format: <region>.ocir.io/<registry>/<image>:<tag><region>.ocir.io/<registry>/<image>:<tag>@digest
- ImageDigest string
- (Updatable) The digest of the container image. For example, sha256:881303a6b2738834d795a32b4a98eb0e5e3d1cad590a712d1e04f9b2fa90a030
- ServerPort int
- (Updatable) The port on which the web server serving the inference is running. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- EnvironmentConfiguration stringType 
- (Updatable) The environment configuration type
- Cmds []string
- (Updatable) The container image run CMD as a list of strings. Use CMDas arguments to theENTRYPOINTor the only command to run in the absence of anENTRYPOINT. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes.
- Entrypoints []string
- (Updatable) The container image run ENTRYPOINT as a list of strings. Accept the CMDas extra arguments. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes. More information on howCMDandENTRYPOINTinteract are here.
- EnvironmentVariables map[string]string
- (Updatable) Environment variables to set for the web server container. The size of envVars must be less than 2048 bytes. Key should be under 32 characters. Key should contain only letters, digits and underscore (_) Key should start with a letter. Key should have at least 2 characters. Key should not end with underscore eg. TEST_Key if added cannot be empty. Value can be empty. No specific size limits on individual Values. But overall environment variables is limited to 2048 bytes. Key can't be reserved Model Deployment environment variables.
- HealthCheck intPort 
- (Updatable) The port on which the container HEALTHCHECK would listen. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- Image string
- (Updatable) The full path to the Oracle Container Repository (OCIR) registry, image, and tag in a canonical format. Acceptable format: <region>.ocir.io/<registry>/<image>:<tag><region>.ocir.io/<registry>/<image>:<tag>@digest
- ImageDigest string
- (Updatable) The digest of the container image. For example, sha256:881303a6b2738834d795a32b4a98eb0e5e3d1cad590a712d1e04f9b2fa90a030
- ServerPort int
- (Updatable) The port on which the web server serving the inference is running. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- environmentConfiguration StringType 
- (Updatable) The environment configuration type
- cmds List<String>
- (Updatable) The container image run CMD as a list of strings. Use CMDas arguments to theENTRYPOINTor the only command to run in the absence of anENTRYPOINT. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes.
- entrypoints List<String>
- (Updatable) The container image run ENTRYPOINT as a list of strings. Accept the CMDas extra arguments. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes. More information on howCMDandENTRYPOINTinteract are here.
- environmentVariables Map<String,String>
- (Updatable) Environment variables to set for the web server container. The size of envVars must be less than 2048 bytes. Key should be under 32 characters. Key should contain only letters, digits and underscore (_) Key should start with a letter. Key should have at least 2 characters. Key should not end with underscore eg. TEST_Key if added cannot be empty. Value can be empty. No specific size limits on individual Values. But overall environment variables is limited to 2048 bytes. Key can't be reserved Model Deployment environment variables.
- healthCheck IntegerPort 
- (Updatable) The port on which the container HEALTHCHECK would listen. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- image String
- (Updatable) The full path to the Oracle Container Repository (OCIR) registry, image, and tag in a canonical format. Acceptable format: <region>.ocir.io/<registry>/<image>:<tag><region>.ocir.io/<registry>/<image>:<tag>@digest
- imageDigest String
- (Updatable) The digest of the container image. For example, sha256:881303a6b2738834d795a32b4a98eb0e5e3d1cad590a712d1e04f9b2fa90a030
- serverPort Integer
- (Updatable) The port on which the web server serving the inference is running. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- environmentConfiguration stringType 
- (Updatable) The environment configuration type
- cmds string[]
- (Updatable) The container image run CMD as a list of strings. Use CMDas arguments to theENTRYPOINTor the only command to run in the absence of anENTRYPOINT. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes.
- entrypoints string[]
- (Updatable) The container image run ENTRYPOINT as a list of strings. Accept the CMDas extra arguments. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes. More information on howCMDandENTRYPOINTinteract are here.
- environmentVariables {[key: string]: string}
- (Updatable) Environment variables to set for the web server container. The size of envVars must be less than 2048 bytes. Key should be under 32 characters. Key should contain only letters, digits and underscore (_) Key should start with a letter. Key should have at least 2 characters. Key should not end with underscore eg. TEST_Key if added cannot be empty. Value can be empty. No specific size limits on individual Values. But overall environment variables is limited to 2048 bytes. Key can't be reserved Model Deployment environment variables.
- healthCheck numberPort 
- (Updatable) The port on which the container HEALTHCHECK would listen. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- image string
- (Updatable) The full path to the Oracle Container Repository (OCIR) registry, image, and tag in a canonical format. Acceptable format: <region>.ocir.io/<registry>/<image>:<tag><region>.ocir.io/<registry>/<image>:<tag>@digest
- imageDigest string
- (Updatable) The digest of the container image. For example, sha256:881303a6b2738834d795a32b4a98eb0e5e3d1cad590a712d1e04f9b2fa90a030
- serverPort number
- (Updatable) The port on which the web server serving the inference is running. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- environment_configuration_ strtype 
- (Updatable) The environment configuration type
- cmds Sequence[str]
- (Updatable) The container image run CMD as a list of strings. Use CMDas arguments to theENTRYPOINTor the only command to run in the absence of anENTRYPOINT. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes.
- entrypoints Sequence[str]
- (Updatable) The container image run ENTRYPOINT as a list of strings. Accept the CMDas extra arguments. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes. More information on howCMDandENTRYPOINTinteract are here.
- environment_variables Mapping[str, str]
- (Updatable) Environment variables to set for the web server container. The size of envVars must be less than 2048 bytes. Key should be under 32 characters. Key should contain only letters, digits and underscore (_) Key should start with a letter. Key should have at least 2 characters. Key should not end with underscore eg. TEST_Key if added cannot be empty. Value can be empty. No specific size limits on individual Values. But overall environment variables is limited to 2048 bytes. Key can't be reserved Model Deployment environment variables.
- health_check_ intport 
- (Updatable) The port on which the container HEALTHCHECK would listen. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- image str
- (Updatable) The full path to the Oracle Container Repository (OCIR) registry, image, and tag in a canonical format. Acceptable format: <region>.ocir.io/<registry>/<image>:<tag><region>.ocir.io/<registry>/<image>:<tag>@digest
- image_digest str
- (Updatable) The digest of the container image. For example, sha256:881303a6b2738834d795a32b4a98eb0e5e3d1cad590a712d1e04f9b2fa90a030
- server_port int
- (Updatable) The port on which the web server serving the inference is running. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- environmentConfiguration StringType 
- (Updatable) The environment configuration type
- cmds List<String>
- (Updatable) The container image run CMD as a list of strings. Use CMDas arguments to theENTRYPOINTor the only command to run in the absence of anENTRYPOINT. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes.
- entrypoints List<String>
- (Updatable) The container image run ENTRYPOINT as a list of strings. Accept the CMDas extra arguments. The combined size ofCMDandENTRYPOINTmust be less than 2048 bytes. More information on howCMDandENTRYPOINTinteract are here.
- environmentVariables Map<String>
- (Updatable) Environment variables to set for the web server container. The size of envVars must be less than 2048 bytes. Key should be under 32 characters. Key should contain only letters, digits and underscore (_) Key should start with a letter. Key should have at least 2 characters. Key should not end with underscore eg. TEST_Key if added cannot be empty. Value can be empty. No specific size limits on individual Values. But overall environment variables is limited to 2048 bytes. Key can't be reserved Model Deployment environment variables.
- healthCheck NumberPort 
- (Updatable) The port on which the container HEALTHCHECK would listen. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
- image String
- (Updatable) The full path to the Oracle Container Repository (OCIR) registry, image, and tag in a canonical format. Acceptable format: <region>.ocir.io/<registry>/<image>:<tag><region>.ocir.io/<registry>/<image>:<tag>@digest
- imageDigest String
- (Updatable) The digest of the container image. For example, sha256:881303a6b2738834d795a32b4a98eb0e5e3d1cad590a712d1e04f9b2fa90a030
- serverPort Number
- (Updatable) The port on which the web server serving the inference is running. The port can be anything between 1024and65535. The following ports cannot be used24224,8446,8447.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetails, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsArgs                  
- InstanceConfiguration ModelDeployment Model Deployment Configuration Details Model Configuration Details Instance Configuration 
- (Updatable) The model deployment instance configuration
- ModelId string
- (Updatable) The OCID of the model you want to deploy.
- BandwidthMbps int
- (Updatable) The minimum network bandwidth for the model deployment.
- MaximumBandwidth intMbps 
- (Updatable) The maximum network bandwidth for the model deployment.
- ScalingPolicy ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy 
- (Updatable) The scaling policy to apply to each model of the deployment.
- InstanceConfiguration ModelDeployment Model Deployment Configuration Details Model Configuration Details Instance Configuration 
- (Updatable) The model deployment instance configuration
- ModelId string
- (Updatable) The OCID of the model you want to deploy.
- BandwidthMbps int
- (Updatable) The minimum network bandwidth for the model deployment.
- MaximumBandwidth intMbps 
- (Updatable) The maximum network bandwidth for the model deployment.
- ScalingPolicy ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy 
- (Updatable) The scaling policy to apply to each model of the deployment.
- instanceConfiguration ModelDeployment Model Deployment Configuration Details Model Configuration Details Instance Configuration 
- (Updatable) The model deployment instance configuration
- modelId String
- (Updatable) The OCID of the model you want to deploy.
- bandwidthMbps Integer
- (Updatable) The minimum network bandwidth for the model deployment.
- maximumBandwidth IntegerMbps 
- (Updatable) The maximum network bandwidth for the model deployment.
- scalingPolicy ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy 
- (Updatable) The scaling policy to apply to each model of the deployment.
- instanceConfiguration ModelDeployment Model Deployment Configuration Details Model Configuration Details Instance Configuration 
- (Updatable) The model deployment instance configuration
- modelId string
- (Updatable) The OCID of the model you want to deploy.
- bandwidthMbps number
- (Updatable) The minimum network bandwidth for the model deployment.
- maximumBandwidth numberMbps 
- (Updatable) The maximum network bandwidth for the model deployment.
- scalingPolicy ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy 
- (Updatable) The scaling policy to apply to each model of the deployment.
- instance_configuration ModelDeployment Model Deployment Configuration Details Model Configuration Details Instance Configuration 
- (Updatable) The model deployment instance configuration
- model_id str
- (Updatable) The OCID of the model you want to deploy.
- bandwidth_mbps int
- (Updatable) The minimum network bandwidth for the model deployment.
- maximum_bandwidth_ intmbps 
- (Updatable) The maximum network bandwidth for the model deployment.
- scaling_policy ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy 
- (Updatable) The scaling policy to apply to each model of the deployment.
- instanceConfiguration Property Map
- (Updatable) The model deployment instance configuration
- modelId String
- (Updatable) The OCID of the model you want to deploy.
- bandwidthMbps Number
- (Updatable) The minimum network bandwidth for the model deployment.
- maximumBandwidth NumberMbps 
- (Updatable) The maximum network bandwidth for the model deployment.
- scalingPolicy Property Map
- (Updatable) The scaling policy to apply to each model of the deployment.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfiguration, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationArgs                      
- InstanceShape stringName 
- (Updatable) The shape used to launch the model deployment instances.
- ModelDeployment ModelInstance Shape Config Details Deployment Model Deployment Configuration Details Model Configuration Details Instance Configuration Model Deployment Instance Shape Config Details 
- (Updatable) Details for the model-deployment instance shape configuration.
- PrivateEndpoint stringId 
- (Updatable) The OCID of a Data Science private endpoint.
- SubnetId string
- (Updatable) A model deployment instance is provided with a VNIC for network access. This specifies the OCID of the subnet to create a VNIC in. The subnet should be in a VCN with a NAT/SGW gateway for egress.
- InstanceShape stringName 
- (Updatable) The shape used to launch the model deployment instances.
- ModelDeployment ModelInstance Shape Config Details Deployment Model Deployment Configuration Details Model Configuration Details Instance Configuration Model Deployment Instance Shape Config Details 
- (Updatable) Details for the model-deployment instance shape configuration.
- PrivateEndpoint stringId 
- (Updatable) The OCID of a Data Science private endpoint.
- SubnetId string
- (Updatable) A model deployment instance is provided with a VNIC for network access. This specifies the OCID of the subnet to create a VNIC in. The subnet should be in a VCN with a NAT/SGW gateway for egress.
- instanceShape StringName 
- (Updatable) The shape used to launch the model deployment instances.
- modelDeployment ModelInstance Shape Config Details Deployment Model Deployment Configuration Details Model Configuration Details Instance Configuration Model Deployment Instance Shape Config Details 
- (Updatable) Details for the model-deployment instance shape configuration.
- privateEndpoint StringId 
- (Updatable) The OCID of a Data Science private endpoint.
- subnetId String
- (Updatable) A model deployment instance is provided with a VNIC for network access. This specifies the OCID of the subnet to create a VNIC in. The subnet should be in a VCN with a NAT/SGW gateway for egress.
- instanceShape stringName 
- (Updatable) The shape used to launch the model deployment instances.
- modelDeployment ModelInstance Shape Config Details Deployment Model Deployment Configuration Details Model Configuration Details Instance Configuration Model Deployment Instance Shape Config Details 
- (Updatable) Details for the model-deployment instance shape configuration.
- privateEndpoint stringId 
- (Updatable) The OCID of a Data Science private endpoint.
- subnetId string
- (Updatable) A model deployment instance is provided with a VNIC for network access. This specifies the OCID of the subnet to create a VNIC in. The subnet should be in a VCN with a NAT/SGW gateway for egress.
- instance_shape_ strname 
- (Updatable) The shape used to launch the model deployment instances.
- model_deployment_ Modelinstance_ shape_ config_ details Deployment Model Deployment Configuration Details Model Configuration Details Instance Configuration Model Deployment Instance Shape Config Details 
- (Updatable) Details for the model-deployment instance shape configuration.
- private_endpoint_ strid 
- (Updatable) The OCID of a Data Science private endpoint.
- subnet_id str
- (Updatable) A model deployment instance is provided with a VNIC for network access. This specifies the OCID of the subnet to create a VNIC in. The subnet should be in a VCN with a NAT/SGW gateway for egress.
- instanceShape StringName 
- (Updatable) The shape used to launch the model deployment instances.
- modelDeployment Property MapInstance Shape Config Details 
- (Updatable) Details for the model-deployment instance shape configuration.
- privateEndpoint StringId 
- (Updatable) The OCID of a Data Science private endpoint.
- subnetId String
- (Updatable) A model deployment instance is provided with a VNIC for network access. This specifies the OCID of the subnet to create a VNIC in. The subnet should be in a VCN with a NAT/SGW gateway for egress.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetails, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsInstanceConfigurationModelDeploymentInstanceShapeConfigDetailsArgs                                  
- CpuBaseline string
- (Updatable) The baseline OCPU utilization for a subcore burstable VM instance. If this attribute is left blank, it will default to BASELINE_1_1. The following values are supported: BASELINE_1_8 - baseline usage is 1/8 of an OCPU. BASELINE_1_2 - baseline usage is 1/2 of an OCPU. BASELINE_1_1 - baseline usage is an entire OCPU. This represents a non-burstable instance.
- MemoryIn doubleGbs 
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the memory to be specified with in the range of 6 to 1024 GB. VM.Standard3.Flex memory range is between 6 to 512 GB and VM.Optimized3.Flex memory range is between 6 to 256 GB.
- Ocpus double
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the ocpu count to be specified with in the range of 1 to 64 ocpu. VM.Standard3.Flex OCPU range is between 1 to 32 ocpu and for VM.Optimized3.Flex OCPU range is 1 to 18 ocpu.
- CpuBaseline string
- (Updatable) The baseline OCPU utilization for a subcore burstable VM instance. If this attribute is left blank, it will default to BASELINE_1_1. The following values are supported: BASELINE_1_8 - baseline usage is 1/8 of an OCPU. BASELINE_1_2 - baseline usage is 1/2 of an OCPU. BASELINE_1_1 - baseline usage is an entire OCPU. This represents a non-burstable instance.
- MemoryIn float64Gbs 
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the memory to be specified with in the range of 6 to 1024 GB. VM.Standard3.Flex memory range is between 6 to 512 GB and VM.Optimized3.Flex memory range is between 6 to 256 GB.
- Ocpus float64
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the ocpu count to be specified with in the range of 1 to 64 ocpu. VM.Standard3.Flex OCPU range is between 1 to 32 ocpu and for VM.Optimized3.Flex OCPU range is 1 to 18 ocpu.
- cpuBaseline String
- (Updatable) The baseline OCPU utilization for a subcore burstable VM instance. If this attribute is left blank, it will default to BASELINE_1_1. The following values are supported: BASELINE_1_8 - baseline usage is 1/8 of an OCPU. BASELINE_1_2 - baseline usage is 1/2 of an OCPU. BASELINE_1_1 - baseline usage is an entire OCPU. This represents a non-burstable instance.
- memoryIn DoubleGbs 
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the memory to be specified with in the range of 6 to 1024 GB. VM.Standard3.Flex memory range is between 6 to 512 GB and VM.Optimized3.Flex memory range is between 6 to 256 GB.
- ocpus Double
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the ocpu count to be specified with in the range of 1 to 64 ocpu. VM.Standard3.Flex OCPU range is between 1 to 32 ocpu and for VM.Optimized3.Flex OCPU range is 1 to 18 ocpu.
- cpuBaseline string
- (Updatable) The baseline OCPU utilization for a subcore burstable VM instance. If this attribute is left blank, it will default to BASELINE_1_1. The following values are supported: BASELINE_1_8 - baseline usage is 1/8 of an OCPU. BASELINE_1_2 - baseline usage is 1/2 of an OCPU. BASELINE_1_1 - baseline usage is an entire OCPU. This represents a non-burstable instance.
- memoryIn numberGbs 
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the memory to be specified with in the range of 6 to 1024 GB. VM.Standard3.Flex memory range is between 6 to 512 GB and VM.Optimized3.Flex memory range is between 6 to 256 GB.
- ocpus number
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the ocpu count to be specified with in the range of 1 to 64 ocpu. VM.Standard3.Flex OCPU range is between 1 to 32 ocpu and for VM.Optimized3.Flex OCPU range is 1 to 18 ocpu.
- cpu_baseline str
- (Updatable) The baseline OCPU utilization for a subcore burstable VM instance. If this attribute is left blank, it will default to BASELINE_1_1. The following values are supported: BASELINE_1_8 - baseline usage is 1/8 of an OCPU. BASELINE_1_2 - baseline usage is 1/2 of an OCPU. BASELINE_1_1 - baseline usage is an entire OCPU. This represents a non-burstable instance.
- memory_in_ floatgbs 
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the memory to be specified with in the range of 6 to 1024 GB. VM.Standard3.Flex memory range is between 6 to 512 GB and VM.Optimized3.Flex memory range is between 6 to 256 GB.
- ocpus float
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the ocpu count to be specified with in the range of 1 to 64 ocpu. VM.Standard3.Flex OCPU range is between 1 to 32 ocpu and for VM.Optimized3.Flex OCPU range is 1 to 18 ocpu.
- cpuBaseline String
- (Updatable) The baseline OCPU utilization for a subcore burstable VM instance. If this attribute is left blank, it will default to BASELINE_1_1. The following values are supported: BASELINE_1_8 - baseline usage is 1/8 of an OCPU. BASELINE_1_2 - baseline usage is 1/2 of an OCPU. BASELINE_1_1 - baseline usage is an entire OCPU. This represents a non-burstable instance.
- memoryIn NumberGbs 
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the memory to be specified with in the range of 6 to 1024 GB. VM.Standard3.Flex memory range is between 6 to 512 GB and VM.Optimized3.Flex memory range is between 6 to 256 GB.
- ocpus Number
- (Updatable) A model-deployment instance of type VM.Standard.E3.Flex or VM.Standard.E4.Flex allows the ocpu count to be specified with in the range of 1 to 64 ocpu. VM.Standard3.Flex OCPU range is between 1 to 32 ocpu and for VM.Optimized3.Flex OCPU range is 1 to 18 ocpu.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicy, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyArgs                      
- PolicyType string
- (Updatable) The type of scaling policy.
- AutoScaling List<ModelPolicies Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy> 
- (Updatable) The list of autoscaling policy details.
- CoolDown intIn Seconds 
- (Updatable) For threshold-based autoscaling policies, this value is the minimum period of time to wait between scaling actions. The cooldown period gives the system time to stabilize before rescaling. The minimum value is 600 seconds, which is also the default. The cooldown period starts when the model deployment becomes ACTIVE after the scaling operation.
- InstanceCount int
- (Updatable) The number of instances for the model deployment.
- IsEnabled bool
- (Updatable) Whether the autoscaling policy is enabled.
- PolicyType string
- (Updatable) The type of scaling policy.
- AutoScaling []ModelPolicies Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy 
- (Updatable) The list of autoscaling policy details.
- CoolDown intIn Seconds 
- (Updatable) For threshold-based autoscaling policies, this value is the minimum period of time to wait between scaling actions. The cooldown period gives the system time to stabilize before rescaling. The minimum value is 600 seconds, which is also the default. The cooldown period starts when the model deployment becomes ACTIVE after the scaling operation.
- InstanceCount int
- (Updatable) The number of instances for the model deployment.
- IsEnabled bool
- (Updatable) Whether the autoscaling policy is enabled.
- policyType String
- (Updatable) The type of scaling policy.
- autoScaling List<ModelPolicies Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy> 
- (Updatable) The list of autoscaling policy details.
- coolDown IntegerIn Seconds 
- (Updatable) For threshold-based autoscaling policies, this value is the minimum period of time to wait between scaling actions. The cooldown period gives the system time to stabilize before rescaling. The minimum value is 600 seconds, which is also the default. The cooldown period starts when the model deployment becomes ACTIVE after the scaling operation.
- instanceCount Integer
- (Updatable) The number of instances for the model deployment.
- isEnabled Boolean
- (Updatable) Whether the autoscaling policy is enabled.
- policyType string
- (Updatable) The type of scaling policy.
- autoScaling ModelPolicies Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy[] 
- (Updatable) The list of autoscaling policy details.
- coolDown numberIn Seconds 
- (Updatable) For threshold-based autoscaling policies, this value is the minimum period of time to wait between scaling actions. The cooldown period gives the system time to stabilize before rescaling. The minimum value is 600 seconds, which is also the default. The cooldown period starts when the model deployment becomes ACTIVE after the scaling operation.
- instanceCount number
- (Updatable) The number of instances for the model deployment.
- isEnabled boolean
- (Updatable) Whether the autoscaling policy is enabled.
- policy_type str
- (Updatable) The type of scaling policy.
- auto_scaling_ Sequence[Modelpolicies Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy] 
- (Updatable) The list of autoscaling policy details.
- cool_down_ intin_ seconds 
- (Updatable) For threshold-based autoscaling policies, this value is the minimum period of time to wait between scaling actions. The cooldown period gives the system time to stabilize before rescaling. The minimum value is 600 seconds, which is also the default. The cooldown period starts when the model deployment becomes ACTIVE after the scaling operation.
- instance_count int
- (Updatable) The number of instances for the model deployment.
- is_enabled bool
- (Updatable) Whether the autoscaling policy is enabled.
- policyType String
- (Updatable) The type of scaling policy.
- autoScaling List<Property Map>Policies 
- (Updatable) The list of autoscaling policy details.
- coolDown NumberIn Seconds 
- (Updatable) For threshold-based autoscaling policies, this value is the minimum period of time to wait between scaling actions. The cooldown period gives the system time to stabilize before rescaling. The minimum value is 600 seconds, which is also the default. The cooldown period starts when the model deployment becomes ACTIVE after the scaling operation.
- instanceCount Number
- (Updatable) The number of instances for the model deployment.
- isEnabled Boolean
- (Updatable) Whether the autoscaling policy is enabled.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicy, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyArgs                            
- AutoScaling stringPolicy Type 
- (Updatable) The type of autoscaling policy.
- InitialInstance intCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the initial number of instances to launch in the model deployment immediately after autoscaling is enabled. Note that anytime this value is updated, the number of instances will be reset to this value. After autoscaling retrieves performance metrics, the number of instances is automatically adjusted from this initial number to a number that is based on the limits that you set.
- MaximumInstance intCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the maximum number of instances the model deployment is allowed to increase to (scale out).
- MinimumInstance intCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the minimum number of instances the model deployment is allowed to decrease to (scale in).
- Rules
List<ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule> 
- (Updatable) The list of autoscaling policy rules.
- AutoScaling stringPolicy Type 
- (Updatable) The type of autoscaling policy.
- InitialInstance intCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the initial number of instances to launch in the model deployment immediately after autoscaling is enabled. Note that anytime this value is updated, the number of instances will be reset to this value. After autoscaling retrieves performance metrics, the number of instances is automatically adjusted from this initial number to a number that is based on the limits that you set.
- MaximumInstance intCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the maximum number of instances the model deployment is allowed to increase to (scale out).
- MinimumInstance intCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the minimum number of instances the model deployment is allowed to decrease to (scale in).
- Rules
[]ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule 
- (Updatable) The list of autoscaling policy rules.
- autoScaling StringPolicy Type 
- (Updatable) The type of autoscaling policy.
- initialInstance IntegerCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the initial number of instances to launch in the model deployment immediately after autoscaling is enabled. Note that anytime this value is updated, the number of instances will be reset to this value. After autoscaling retrieves performance metrics, the number of instances is automatically adjusted from this initial number to a number that is based on the limits that you set.
- maximumInstance IntegerCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the maximum number of instances the model deployment is allowed to increase to (scale out).
- minimumInstance IntegerCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the minimum number of instances the model deployment is allowed to decrease to (scale in).
- rules
List<ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule> 
- (Updatable) The list of autoscaling policy rules.
- autoScaling stringPolicy Type 
- (Updatable) The type of autoscaling policy.
- initialInstance numberCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the initial number of instances to launch in the model deployment immediately after autoscaling is enabled. Note that anytime this value is updated, the number of instances will be reset to this value. After autoscaling retrieves performance metrics, the number of instances is automatically adjusted from this initial number to a number that is based on the limits that you set.
- maximumInstance numberCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the maximum number of instances the model deployment is allowed to increase to (scale out).
- minimumInstance numberCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the minimum number of instances the model deployment is allowed to decrease to (scale in).
- rules
ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule[] 
- (Updatable) The list of autoscaling policy rules.
- auto_scaling_ strpolicy_ type 
- (Updatable) The type of autoscaling policy.
- initial_instance_ intcount 
- (Updatable) For a threshold-based autoscaling policy, this value is the initial number of instances to launch in the model deployment immediately after autoscaling is enabled. Note that anytime this value is updated, the number of instances will be reset to this value. After autoscaling retrieves performance metrics, the number of instances is automatically adjusted from this initial number to a number that is based on the limits that you set.
- maximum_instance_ intcount 
- (Updatable) For a threshold-based autoscaling policy, this value is the maximum number of instances the model deployment is allowed to increase to (scale out).
- minimum_instance_ intcount 
- (Updatable) For a threshold-based autoscaling policy, this value is the minimum number of instances the model deployment is allowed to decrease to (scale in).
- rules
Sequence[ModelDeployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule] 
- (Updatable) The list of autoscaling policy rules.
- autoScaling StringPolicy Type 
- (Updatable) The type of autoscaling policy.
- initialInstance NumberCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the initial number of instances to launch in the model deployment immediately after autoscaling is enabled. Note that anytime this value is updated, the number of instances will be reset to this value. After autoscaling retrieves performance metrics, the number of instances is automatically adjusted from this initial number to a number that is based on the limits that you set.
- maximumInstance NumberCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the maximum number of instances the model deployment is allowed to increase to (scale out).
- minimumInstance NumberCount 
- (Updatable) For a threshold-based autoscaling policy, this value is the minimum number of instances the model deployment is allowed to decrease to (scale in).
- rules List<Property Map>
- (Updatable) The list of autoscaling policy rules.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRule, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleArgs                              
- MetricExpression stringRule Type 
- (Updatable) The metric expression for creating the alarm used to trigger autoscaling actions on the model deployment. - The following values are supported: - PREDEFINED_EXPRESSION: An expression built using CPU or Memory metrics emitted by the Model Deployment Monitoring.
- CUSTOM_EXPRESSION: A custom Monitoring Query Language (MQL) expression.
 
- ScaleIn ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale In Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- ScaleOut ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale Out Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- MetricType string
- (Updatable) Metric type
- MetricExpression stringRule Type 
- (Updatable) The metric expression for creating the alarm used to trigger autoscaling actions on the model deployment. - The following values are supported: - PREDEFINED_EXPRESSION: An expression built using CPU or Memory metrics emitted by the Model Deployment Monitoring.
- CUSTOM_EXPRESSION: A custom Monitoring Query Language (MQL) expression.
 
- ScaleIn ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale In Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- ScaleOut ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale Out Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- MetricType string
- (Updatable) Metric type
- metricExpression StringRule Type 
- (Updatable) The metric expression for creating the alarm used to trigger autoscaling actions on the model deployment. - The following values are supported: - PREDEFINED_EXPRESSION: An expression built using CPU or Memory metrics emitted by the Model Deployment Monitoring.
- CUSTOM_EXPRESSION: A custom Monitoring Query Language (MQL) expression.
 
- scaleIn ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale In Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- scaleOut ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale Out Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- metricType String
- (Updatable) Metric type
- metricExpression stringRule Type 
- (Updatable) The metric expression for creating the alarm used to trigger autoscaling actions on the model deployment. - The following values are supported: - PREDEFINED_EXPRESSION: An expression built using CPU or Memory metrics emitted by the Model Deployment Monitoring.
- CUSTOM_EXPRESSION: A custom Monitoring Query Language (MQL) expression.
 
- scaleIn ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale In Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- scaleOut ModelConfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale Out Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- metricType string
- (Updatable) Metric type
- metric_expression_ strrule_ type 
- (Updatable) The metric expression for creating the alarm used to trigger autoscaling actions on the model deployment. - The following values are supported: - PREDEFINED_EXPRESSION: An expression built using CPU or Memory metrics emitted by the Model Deployment Monitoring.
- CUSTOM_EXPRESSION: A custom Monitoring Query Language (MQL) expression.
 
- scale_in_ Modelconfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale In Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- scale_out_ Modelconfiguration Deployment Model Deployment Configuration Details Model Configuration Details Scaling Policy Auto Scaling Policy Rule Scale Out Configuration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- metric_type str
- (Updatable) Metric type
- metricExpression StringRule Type 
- (Updatable) The metric expression for creating the alarm used to trigger autoscaling actions on the model deployment. - The following values are supported: - PREDEFINED_EXPRESSION: An expression built using CPU or Memory metrics emitted by the Model Deployment Monitoring.
- CUSTOM_EXPRESSION: A custom Monitoring Query Language (MQL) expression.
 
- scaleIn Property MapConfiguration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- scaleOut Property MapConfiguration 
- (Updatable) The scaling configuration for the predefined metric expression rule.
- metricType String
- (Updatable) Metric type
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfiguration, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleInConfigurationArgs                                    
- InstanceCount intAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- PendingDuration string
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- Query string
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- ScalingConfiguration stringType 
- (Updatable) The type of scaling configuration.
- Threshold int
- (Updatable) A metric value at which the scaling operation will be triggered.
- InstanceCount intAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- PendingDuration string
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- Query string
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- ScalingConfiguration stringType 
- (Updatable) The type of scaling configuration.
- Threshold int
- (Updatable) A metric value at which the scaling operation will be triggered.
- instanceCount IntegerAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pendingDuration String
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query String
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scalingConfiguration StringType 
- (Updatable) The type of scaling configuration.
- threshold Integer
- (Updatable) A metric value at which the scaling operation will be triggered.
- instanceCount numberAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pendingDuration string
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query string
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scalingConfiguration stringType 
- (Updatable) The type of scaling configuration.
- threshold number
- (Updatable) A metric value at which the scaling operation will be triggered.
- instance_count_ intadjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pending_duration str
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query str
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scaling_configuration_ strtype 
- (Updatable) The type of scaling configuration.
- threshold int
- (Updatable) A metric value at which the scaling operation will be triggered.
- instanceCount NumberAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pendingDuration String
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query String
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scalingConfiguration StringType 
- (Updatable) The type of scaling configuration.
- threshold Number
- (Updatable) A metric value at which the scaling operation will be triggered.
ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfiguration, ModelDeploymentModelDeploymentConfigurationDetailsModelConfigurationDetailsScalingPolicyAutoScalingPolicyRuleScaleOutConfigurationArgs                                    
- InstanceCount intAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- PendingDuration string
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- Query string
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- ScalingConfiguration stringType 
- (Updatable) The type of scaling configuration.
- Threshold int
- (Updatable) A metric value at which the scaling operation will be triggered.
- InstanceCount intAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- PendingDuration string
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- Query string
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- ScalingConfiguration stringType 
- (Updatable) The type of scaling configuration.
- Threshold int
- (Updatable) A metric value at which the scaling operation will be triggered.
- instanceCount IntegerAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pendingDuration String
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query String
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scalingConfiguration StringType 
- (Updatable) The type of scaling configuration.
- threshold Integer
- (Updatable) A metric value at which the scaling operation will be triggered.
- instanceCount numberAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pendingDuration string
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query string
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scalingConfiguration stringType 
- (Updatable) The type of scaling configuration.
- threshold number
- (Updatable) A metric value at which the scaling operation will be triggered.
- instance_count_ intadjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pending_duration str
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query str
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scaling_configuration_ strtype 
- (Updatable) The type of scaling configuration.
- threshold int
- (Updatable) A metric value at which the scaling operation will be triggered.
- instanceCount NumberAdjustment 
- (Updatable) The value is used for adjusting the count of instances by.
- pendingDuration String
- (Updatable) The period of time that the condition defined in the alarm must persist before the alarm state changes from "OK" to "FIRING" or vice versa. For example, a value of 5 minutes means that the alarm must persist in breaching the condition for five minutes before the alarm updates its state to "FIRING"; likewise, the alarm must persist in not breaching the condition for five minutes before the alarm updates its state to "OK." - The duration is specified as a string in ISO 8601 format ( - PT10Mfor ten minutes or- PT1Hfor one hour). Minimum: PT3M. Maximum: PT1H. Default: PT3M.
- query String
- (Updatable) The Monitoring Query Language (MQL) expression to evaluate for the alarm. The Alarms feature of the Monitoring service interprets results for each returned time series as Boolean values, where zero represents false and a non-zero value represents true. A true value means that the trigger rule condition has been met. The query must specify a metric, statistic, interval, and trigger rule (threshold or absence). Supported values for interval: - 1m-- 60m(also- 1h). You can optionally specify dimensions and grouping functions. Supported grouping functions:- grouping(),- groupBy().- Example of threshold alarm: - CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() < 25 CPUUtilization[1m]{resourceId = "MODEL_DEPLOYMENT_OCID"}.grouping().mean() > 75 
- scalingConfiguration StringType 
- (Updatable) The type of scaling configuration.
- threshold Number
- (Updatable) A metric value at which the scaling operation will be triggered.
ModelDeploymentModelDeploymentSystemData, ModelDeploymentModelDeploymentSystemDataArgs            
- CurrentInstance intCount 
- This value is the current count of the model deployment instances.
- SystemInfra stringType 
- The infrastructure type of the model deployment.
- CurrentInstance intCount 
- This value is the current count of the model deployment instances.
- SystemInfra stringType 
- The infrastructure type of the model deployment.
- currentInstance IntegerCount 
- This value is the current count of the model deployment instances.
- systemInfra StringType 
- The infrastructure type of the model deployment.
- currentInstance numberCount 
- This value is the current count of the model deployment instances.
- systemInfra stringType 
- The infrastructure type of the model deployment.
- current_instance_ intcount 
- This value is the current count of the model deployment instances.
- system_infra_ strtype 
- The infrastructure type of the model deployment.
- currentInstance NumberCount 
- This value is the current count of the model deployment instances.
- systemInfra StringType 
- The infrastructure type of the model deployment.
Import
ModelDeployments can be imported using the id, e.g.
$ pulumi import oci:DataScience/modelDeployment:ModelDeployment test_model_deployment "id"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.