Oracle Cloud Infrastructure v2.33.0 published on Thursday, May 1, 2025 by Pulumi
oci.GenerativeAi.getModel
Explore with Pulumi AI
This data source provides details about a specific Model resource in Oracle Cloud Infrastructure Generative AI service.
Gets information about a custom model.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModel = oci.GenerativeAi.getModel({
    modelId: testModelOciGenerativeAiModel.id,
});
import pulumi
import pulumi_oci as oci
test_model = oci.GenerativeAi.get_model(model_id=test_model_oci_generative_ai_model["id"])
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/generativeai"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := generativeai.GetModel(ctx, &generativeai.GetModelArgs{
			ModelId: testModelOciGenerativeAiModel.Id,
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModel = Oci.GenerativeAi.GetModel.Invoke(new()
    {
        ModelId = testModelOciGenerativeAiModel.Id,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.GenerativeAi.GenerativeAiFunctions;
import com.pulumi.oci.GenerativeAi.inputs.GetModelArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModel = GenerativeAiFunctions.getModel(GetModelArgs.builder()
            .modelId(testModelOciGenerativeAiModel.id())
            .build());
    }
}
variables:
  testModel:
    fn::invoke:
      function: oci:GenerativeAi:getModel
      arguments:
        modelId: ${testModelOciGenerativeAiModel.id}
Using getModel
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModel(args: GetModelArgs, opts?: InvokeOptions): Promise<GetModelResult>
function getModelOutput(args: GetModelOutputArgs, opts?: InvokeOptions): Output<GetModelResult>def get_model(model_id: Optional[str] = None,
              opts: Optional[InvokeOptions] = None) -> GetModelResult
def get_model_output(model_id: Optional[pulumi.Input[str]] = None,
              opts: Optional[InvokeOptions] = None) -> Output[GetModelResult]func LookupModel(ctx *Context, args *LookupModelArgs, opts ...InvokeOption) (*LookupModelResult, error)
func LookupModelOutput(ctx *Context, args *LookupModelOutputArgs, opts ...InvokeOption) LookupModelResultOutput> Note: This function is named LookupModel in the Go SDK.
public static class GetModel 
{
    public static Task<GetModelResult> InvokeAsync(GetModelArgs args, InvokeOptions? opts = null)
    public static Output<GetModelResult> Invoke(GetModelInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
public static Output<GetModelResult> getModel(GetModelArgs args, InvokeOptions options)
fn::invoke:
  function: oci:GenerativeAi/getModel:getModel
  arguments:
    # arguments dictionaryThe following arguments are supported:
- ModelId string
- The model OCID
- ModelId string
- The model OCID
- modelId String
- The model OCID
- modelId string
- The model OCID
- model_id str
- The model OCID
- modelId String
- The model OCID
getModel Result
The following output properties are available:
- BaseModel stringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- Capabilities List<string>
- Describes what this model can be used for.
- CompartmentId string
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- Dictionary<string, string>
- Description string
- An optional description of the model.
- DisplayName string
- A user-friendly name.
- FineTune List<GetDetails Model Fine Tune Detail> 
- Details about fine-tuning a custom model.
- Dictionary<string, string>
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- Id string
- An ID that uniquely identifies a pretrained or fine-tuned model.
- IsLong boolTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- LifecycleDetails string
- A message describing the current state of the model in more detail that can provide actionable information.
- ModelId string
- ModelMetrics List<GetModel Model Metric> 
- Model metrics during the creation of a new model.
- State string
- The lifecycle state of the model.
- Dictionary<string, string>
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- TimeCreated string
- The date and time that the model was created in the format of an RFC3339 datetime string.
- TimeDeprecated string
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- TimeUpdated string
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- Type string
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- Vendor string
- The provider of the base model.
- Version string
- The version of the model.
- BaseModel stringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- Capabilities []string
- Describes what this model can be used for.
- CompartmentId string
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- map[string]string
- Description string
- An optional description of the model.
- DisplayName string
- A user-friendly name.
- FineTune []GetDetails Model Fine Tune Detail 
- Details about fine-tuning a custom model.
- map[string]string
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- Id string
- An ID that uniquely identifies a pretrained or fine-tuned model.
- IsLong boolTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- LifecycleDetails string
- A message describing the current state of the model in more detail that can provide actionable information.
- ModelId string
- ModelMetrics []GetModel Model Metric 
- Model metrics during the creation of a new model.
- State string
- The lifecycle state of the model.
- map[string]string
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- TimeCreated string
- The date and time that the model was created in the format of an RFC3339 datetime string.
- TimeDeprecated string
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- TimeUpdated string
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- Type string
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- Vendor string
- The provider of the base model.
- Version string
- The version of the model.
- baseModel StringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities List<String>
- Describes what this model can be used for.
- compartmentId String
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- Map<String,String>
- description String
- An optional description of the model.
- displayName String
- A user-friendly name.
- fineTune List<GetDetails Model Fine Tune Detail> 
- Details about fine-tuning a custom model.
- Map<String,String>
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id String
- An ID that uniquely identifies a pretrained or fine-tuned model.
- isLong BooleanTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycleDetails String
- A message describing the current state of the model in more detail that can provide actionable information.
- modelId String
- modelMetrics List<GetModel Model Metric> 
- Model metrics during the creation of a new model.
- state String
- The lifecycle state of the model.
- Map<String,String>
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated String
- The date and time that the model was created in the format of an RFC3339 datetime string.
- timeDeprecated String
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- timeUpdated String
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type String
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor String
- The provider of the base model.
- version String
- The version of the model.
- baseModel stringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities string[]
- Describes what this model can be used for.
- compartmentId string
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- {[key: string]: string}
- description string
- An optional description of the model.
- displayName string
- A user-friendly name.
- fineTune GetDetails Model Fine Tune Detail[] 
- Details about fine-tuning a custom model.
- {[key: string]: string}
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id string
- An ID that uniquely identifies a pretrained or fine-tuned model.
- isLong booleanTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycleDetails string
- A message describing the current state of the model in more detail that can provide actionable information.
- modelId string
- modelMetrics GetModel Model Metric[] 
- Model metrics during the creation of a new model.
- state string
- The lifecycle state of the model.
- {[key: string]: string}
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated string
- The date and time that the model was created in the format of an RFC3339 datetime string.
- timeDeprecated string
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- timeUpdated string
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type string
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor string
- The provider of the base model.
- version string
- The version of the model.
- base_model_ strid 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities Sequence[str]
- Describes what this model can be used for.
- compartment_id str
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- Mapping[str, str]
- description str
- An optional description of the model.
- display_name str
- A user-friendly name.
- fine_tune_ Sequence[Getdetails Model Fine Tune Detail] 
- Details about fine-tuning a custom model.
- Mapping[str, str]
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id str
- An ID that uniquely identifies a pretrained or fine-tuned model.
- is_long_ boolterm_ supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycle_details str
- A message describing the current state of the model in more detail that can provide actionable information.
- model_id str
- model_metrics Sequence[GetModel Model Metric] 
- Model metrics during the creation of a new model.
- state str
- The lifecycle state of the model.
- Mapping[str, str]
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- time_created str
- The date and time that the model was created in the format of an RFC3339 datetime string.
- time_deprecated str
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- time_updated str
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type str
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor str
- The provider of the base model.
- version str
- The version of the model.
- baseModel StringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities List<String>
- Describes what this model can be used for.
- compartmentId String
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- Map<String>
- description String
- An optional description of the model.
- displayName String
- A user-friendly name.
- fineTune List<Property Map>Details 
- Details about fine-tuning a custom model.
- Map<String>
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id String
- An ID that uniquely identifies a pretrained or fine-tuned model.
- isLong BooleanTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycleDetails String
- A message describing the current state of the model in more detail that can provide actionable information.
- modelId String
- modelMetrics List<Property Map>
- Model metrics during the creation of a new model.
- state String
- The lifecycle state of the model.
- Map<String>
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated String
- The date and time that the model was created in the format of an RFC3339 datetime string.
- timeDeprecated String
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- timeUpdated String
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type String
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor String
- The provider of the base model.
- version String
- The version of the model.
Supporting Types
GetModelFineTuneDetail    
- DedicatedAi stringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- TrainingConfigs List<GetModel Fine Tune Detail Training Config> 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- TrainingDatasets List<GetModel Fine Tune Detail Training Dataset> 
- The dataset used to fine-tune the model.
- DedicatedAi stringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- TrainingConfigs []GetModel Fine Tune Detail Training Config 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- TrainingDatasets []GetModel Fine Tune Detail Training Dataset 
- The dataset used to fine-tune the model.
- dedicatedAi StringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- trainingConfigs List<GetModel Fine Tune Detail Training Config> 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- trainingDatasets List<GetModel Fine Tune Detail Training Dataset> 
- The dataset used to fine-tune the model.
- dedicatedAi stringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- trainingConfigs GetModel Fine Tune Detail Training Config[] 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- trainingDatasets GetModel Fine Tune Detail Training Dataset[] 
- The dataset used to fine-tune the model.
- dedicated_ai_ strcluster_ id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- training_configs Sequence[GetModel Fine Tune Detail Training Config] 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- training_datasets Sequence[GetModel Fine Tune Detail Training Dataset] 
- The dataset used to fine-tune the model.
- dedicatedAi StringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- trainingConfigs List<Property Map>
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- trainingDatasets List<Property Map>
- The dataset used to fine-tune the model.
GetModelFineTuneDetailTrainingConfig      
- EarlyStopping intPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- EarlyStopping doubleThreshold 
- How much the loss must improve to prevent early stopping.
- LearningRate double
- The initial learning rate to be used during training
- LogModel intMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- LoraAlpha int
- This parameter represents the scaling factor for the weight matrices in LoRA.
- LoraDropout double
- This parameter indicates the dropout probability for LoRA layers.
- LoraR int
- This parameter represents the LoRA rank of the update matrices.
- NumOf intLast Layers 
- The number of last layers to be fine-tuned.
- TotalTraining intEpochs 
- The maximum number of training epochs to run for.
- TrainingBatch intSize 
- The batch size used during training.
- TrainingConfig stringType 
- The fine-tuning method for training a custom model.
- EarlyStopping intPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- EarlyStopping float64Threshold 
- How much the loss must improve to prevent early stopping.
- LearningRate float64
- The initial learning rate to be used during training
- LogModel intMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- LoraAlpha int
- This parameter represents the scaling factor for the weight matrices in LoRA.
- LoraDropout float64
- This parameter indicates the dropout probability for LoRA layers.
- LoraR int
- This parameter represents the LoRA rank of the update matrices.
- NumOf intLast Layers 
- The number of last layers to be fine-tuned.
- TotalTraining intEpochs 
- The maximum number of training epochs to run for.
- TrainingBatch intSize 
- The batch size used during training.
- TrainingConfig stringType 
- The fine-tuning method for training a custom model.
- earlyStopping IntegerPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- earlyStopping DoubleThreshold 
- How much the loss must improve to prevent early stopping.
- learningRate Double
- The initial learning rate to be used during training
- logModel IntegerMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- loraAlpha Integer
- This parameter represents the scaling factor for the weight matrices in LoRA.
- loraDropout Double
- This parameter indicates the dropout probability for LoRA layers.
- loraR Integer
- This parameter represents the LoRA rank of the update matrices.
- numOf IntegerLast Layers 
- The number of last layers to be fine-tuned.
- totalTraining IntegerEpochs 
- The maximum number of training epochs to run for.
- trainingBatch IntegerSize 
- The batch size used during training.
- trainingConfig StringType 
- The fine-tuning method for training a custom model.
- earlyStopping numberPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- earlyStopping numberThreshold 
- How much the loss must improve to prevent early stopping.
- learningRate number
- The initial learning rate to be used during training
- logModel numberMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- loraAlpha number
- This parameter represents the scaling factor for the weight matrices in LoRA.
- loraDropout number
- This parameter indicates the dropout probability for LoRA layers.
- loraR number
- This parameter represents the LoRA rank of the update matrices.
- numOf numberLast Layers 
- The number of last layers to be fine-tuned.
- totalTraining numberEpochs 
- The maximum number of training epochs to run for.
- trainingBatch numberSize 
- The batch size used during training.
- trainingConfig stringType 
- The fine-tuning method for training a custom model.
- early_stopping_ intpatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- early_stopping_ floatthreshold 
- How much the loss must improve to prevent early stopping.
- learning_rate float
- The initial learning rate to be used during training
- log_model_ intmetrics_ interval_ in_ steps 
- Determines how frequently to log model metrics.
- lora_alpha int
- This parameter represents the scaling factor for the weight matrices in LoRA.
- lora_dropout float
- This parameter indicates the dropout probability for LoRA layers.
- lora_r int
- This parameter represents the LoRA rank of the update matrices.
- num_of_ intlast_ layers 
- The number of last layers to be fine-tuned.
- total_training_ intepochs 
- The maximum number of training epochs to run for.
- training_batch_ intsize 
- The batch size used during training.
- training_config_ strtype 
- The fine-tuning method for training a custom model.
- earlyStopping NumberPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- earlyStopping NumberThreshold 
- How much the loss must improve to prevent early stopping.
- learningRate Number
- The initial learning rate to be used during training
- logModel NumberMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- loraAlpha Number
- This parameter represents the scaling factor for the weight matrices in LoRA.
- loraDropout Number
- This parameter indicates the dropout probability for LoRA layers.
- loraR Number
- This parameter represents the LoRA rank of the update matrices.
- numOf NumberLast Layers 
- The number of last layers to be fine-tuned.
- totalTraining NumberEpochs 
- The maximum number of training epochs to run for.
- trainingBatch NumberSize 
- The batch size used during training.
- trainingConfig StringType 
- The fine-tuning method for training a custom model.
GetModelFineTuneDetailTrainingDataset      
- Bucket string
- The Object Storage bucket name.
- DatasetType string
- The type of the data asset.
- Namespace string
- The Object Storage namespace.
- Object string
- The Object Storage object name.
- Bucket string
- The Object Storage bucket name.
- DatasetType string
- The type of the data asset.
- Namespace string
- The Object Storage namespace.
- Object string
- The Object Storage object name.
- bucket String
- The Object Storage bucket name.
- datasetType String
- The type of the data asset.
- namespace String
- The Object Storage namespace.
- object String
- The Object Storage object name.
- bucket string
- The Object Storage bucket name.
- datasetType string
- The type of the data asset.
- namespace string
- The Object Storage namespace.
- object string
- The Object Storage object name.
- bucket str
- The Object Storage bucket name.
- dataset_type str
- The type of the data asset.
- namespace str
- The Object Storage namespace.
- object str
- The Object Storage object name.
- bucket String
- The Object Storage bucket name.
- datasetType String
- The type of the data asset.
- namespace String
- The Object Storage namespace.
- object String
- The Object Storage object name.
GetModelModelMetric   
- FinalAccuracy double
- Fine-tuned model accuracy.
- FinalLoss double
- Fine-tuned model loss.
- ModelMetrics stringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- FinalAccuracy float64
- Fine-tuned model accuracy.
- FinalLoss float64
- Fine-tuned model loss.
- ModelMetrics stringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- finalAccuracy Double
- Fine-tuned model accuracy.
- finalLoss Double
- Fine-tuned model loss.
- modelMetrics StringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- finalAccuracy number
- Fine-tuned model accuracy.
- finalLoss number
- Fine-tuned model loss.
- modelMetrics stringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- final_accuracy float
- Fine-tuned model accuracy.
- final_loss float
- Fine-tuned model loss.
- model_metrics_ strtype 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- finalAccuracy Number
- Fine-tuned model accuracy.
- finalLoss Number
- Fine-tuned model loss.
- modelMetrics StringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.