Oracle Cloud Infrastructure v2.33.0 published on Thursday, May 1, 2025 by Pulumi
oci.GenerativeAi.getModels
Explore with Pulumi AI
This data source provides the list of Models in Oracle Cloud Infrastructure Generative AI service.
Lists the models in a specific compartment. Includes pretrained base models and fine-tuned custom models.
Example Usage
import * as pulumi from "@pulumi/pulumi";
import * as oci from "@pulumi/oci";
const testModels = oci.GenerativeAi.getModels({
    compartmentId: compartmentId,
    capabilities: modelCapability,
    displayName: modelDisplayName,
    id: modelId,
    state: modelState,
    vendor: modelVendor,
});
import pulumi
import pulumi_oci as oci
test_models = oci.GenerativeAi.get_models(compartment_id=compartment_id,
    capabilities=model_capability,
    display_name=model_display_name,
    id=model_id,
    state=model_state,
    vendor=model_vendor)
package main
import (
	"github.com/pulumi/pulumi-oci/sdk/v2/go/oci/generativeai"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		_, err := generativeai.GetModels(ctx, &generativeai.GetModelsArgs{
			CompartmentId: compartmentId,
			Capabilities:  modelCapability,
			DisplayName:   pulumi.StringRef(modelDisplayName),
			Id:            pulumi.StringRef(modelId),
			State:         pulumi.StringRef(modelState),
			Vendor:        pulumi.StringRef(modelVendor),
		}, nil)
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Oci = Pulumi.Oci;
return await Deployment.RunAsync(() => 
{
    var testModels = Oci.GenerativeAi.GetModels.Invoke(new()
    {
        CompartmentId = compartmentId,
        Capabilities = modelCapability,
        DisplayName = modelDisplayName,
        Id = modelId,
        State = modelState,
        Vendor = modelVendor,
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.oci.GenerativeAi.GenerativeAiFunctions;
import com.pulumi.oci.GenerativeAi.inputs.GetModelsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var testModels = GenerativeAiFunctions.getModels(GetModelsArgs.builder()
            .compartmentId(compartmentId)
            .capabilities(modelCapability)
            .displayName(modelDisplayName)
            .id(modelId)
            .state(modelState)
            .vendor(modelVendor)
            .build());
    }
}
variables:
  testModels:
    fn::invoke:
      function: oci:GenerativeAi:getModels
      arguments:
        compartmentId: ${compartmentId}
        capabilities: ${modelCapability}
        displayName: ${modelDisplayName}
        id: ${modelId}
        state: ${modelState}
        vendor: ${modelVendor}
Using getModels
Two invocation forms are available. The direct form accepts plain arguments and either blocks until the result value is available, or returns a Promise-wrapped result. The output form accepts Input-wrapped arguments and returns an Output-wrapped result.
function getModels(args: GetModelsArgs, opts?: InvokeOptions): Promise<GetModelsResult>
function getModelsOutput(args: GetModelsOutputArgs, opts?: InvokeOptions): Output<GetModelsResult>def get_models(capabilities: Optional[Sequence[str]] = None,
               compartment_id: Optional[str] = None,
               display_name: Optional[str] = None,
               filters: Optional[Sequence[GetModelsFilter]] = None,
               id: Optional[str] = None,
               state: Optional[str] = None,
               vendor: Optional[str] = None,
               opts: Optional[InvokeOptions] = None) -> GetModelsResult
def get_models_output(capabilities: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None,
               compartment_id: Optional[pulumi.Input[str]] = None,
               display_name: Optional[pulumi.Input[str]] = None,
               filters: Optional[pulumi.Input[Sequence[pulumi.Input[GetModelsFilterArgs]]]] = None,
               id: Optional[pulumi.Input[str]] = None,
               state: Optional[pulumi.Input[str]] = None,
               vendor: Optional[pulumi.Input[str]] = None,
               opts: Optional[InvokeOptions] = None) -> Output[GetModelsResult]func GetModels(ctx *Context, args *GetModelsArgs, opts ...InvokeOption) (*GetModelsResult, error)
func GetModelsOutput(ctx *Context, args *GetModelsOutputArgs, opts ...InvokeOption) GetModelsResultOutput> Note: This function is named GetModels in the Go SDK.
public static class GetModels 
{
    public static Task<GetModelsResult> InvokeAsync(GetModelsArgs args, InvokeOptions? opts = null)
    public static Output<GetModelsResult> Invoke(GetModelsInvokeArgs args, InvokeOptions? opts = null)
}public static CompletableFuture<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
public static Output<GetModelsResult> getModels(GetModelsArgs args, InvokeOptions options)
fn::invoke:
  function: oci:GenerativeAi/getModels:getModels
  arguments:
    # arguments dictionaryThe following arguments are supported:
- CompartmentId string
- The OCID of the compartment in which to list resources.
- Capabilities List<string>
- A filter to return only resources their capability matches the given capability.
- DisplayName string
- A filter to return only resources that match the given display name exactly.
- Filters
List<GetModels Filter> 
- Id string
- The ID of the model.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Vendor string
- A filter to return only resources that match the entire vendor given.
- CompartmentId string
- The OCID of the compartment in which to list resources.
- Capabilities []string
- A filter to return only resources their capability matches the given capability.
- DisplayName string
- A filter to return only resources that match the given display name exactly.
- Filters
[]GetModels Filter 
- Id string
- The ID of the model.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Vendor string
- A filter to return only resources that match the entire vendor given.
- compartmentId String
- The OCID of the compartment in which to list resources.
- capabilities List<String>
- A filter to return only resources their capability matches the given capability.
- displayName String
- A filter to return only resources that match the given display name exactly.
- filters
List<GetModels Filter> 
- id String
- The ID of the model.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- vendor String
- A filter to return only resources that match the entire vendor given.
- compartmentId string
- The OCID of the compartment in which to list resources.
- capabilities string[]
- A filter to return only resources their capability matches the given capability.
- displayName string
- A filter to return only resources that match the given display name exactly.
- filters
GetModels Filter[] 
- id string
- The ID of the model.
- state string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- vendor string
- A filter to return only resources that match the entire vendor given.
- compartment_id str
- The OCID of the compartment in which to list resources.
- capabilities Sequence[str]
- A filter to return only resources their capability matches the given capability.
- display_name str
- A filter to return only resources that match the given display name exactly.
- filters
Sequence[GetModels Filter] 
- id str
- The ID of the model.
- state str
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- vendor str
- A filter to return only resources that match the entire vendor given.
- compartmentId String
- The OCID of the compartment in which to list resources.
- capabilities List<String>
- A filter to return only resources their capability matches the given capability.
- displayName String
- A filter to return only resources that match the given display name exactly.
- filters List<Property Map>
- id String
- The ID of the model.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- vendor String
- A filter to return only resources that match the entire vendor given.
getModels Result
The following output properties are available:
- CompartmentId string
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- ModelCollections List<GetModels Model Collection> 
- The list of model_collection.
- Capabilities List<string>
- DisplayName string
- A user-friendly name.
- Filters
List<GetModels Filter> 
- Id string
- An ID that uniquely identifies a pretrained or fine-tuned model.
- State string
- The lifecycle state of the model.
- Vendor string
- The provider of the base model.
- CompartmentId string
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- ModelCollections []GetModels Model Collection 
- The list of model_collection.
- Capabilities []string
- DisplayName string
- A user-friendly name.
- Filters
[]GetModels Filter 
- Id string
- An ID that uniquely identifies a pretrained or fine-tuned model.
- State string
- The lifecycle state of the model.
- Vendor string
- The provider of the base model.
- compartmentId String
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- modelCollections List<GetModels Model Collection> 
- The list of model_collection.
- capabilities List<String>
- displayName String
- A user-friendly name.
- filters
List<GetModels Filter> 
- id String
- An ID that uniquely identifies a pretrained or fine-tuned model.
- state String
- The lifecycle state of the model.
- vendor String
- The provider of the base model.
- compartmentId string
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- modelCollections GetModels Model Collection[] 
- The list of model_collection.
- capabilities string[]
- displayName string
- A user-friendly name.
- filters
GetModels Filter[] 
- id string
- An ID that uniquely identifies a pretrained or fine-tuned model.
- state string
- The lifecycle state of the model.
- vendor string
- The provider of the base model.
- compartment_id str
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- model_collections Sequence[GetModels Model Collection] 
- The list of model_collection.
- capabilities Sequence[str]
- display_name str
- A user-friendly name.
- filters
Sequence[GetModels Filter] 
- id str
- An ID that uniquely identifies a pretrained or fine-tuned model.
- state str
- The lifecycle state of the model.
- vendor str
- The provider of the base model.
- compartmentId String
- The compartment OCID for fine-tuned models. For pretrained models, this value is null.
- modelCollections List<Property Map>
- The list of model_collection.
- capabilities List<String>
- displayName String
- A user-friendly name.
- filters List<Property Map>
- id String
- An ID that uniquely identifies a pretrained or fine-tuned model.
- state String
- The lifecycle state of the model.
- vendor String
- The provider of the base model.
Supporting Types
GetModelsFilter  
GetModelsModelCollection   
GetModelsModelCollectionItem    
- BaseModel stringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- Capabilities List<string>
- Describes what this model can be used for.
- CompartmentId string
- The OCID of the compartment in which to list resources.
- Dictionary<string, string>
- Description string
- An optional description of the model.
- DisplayName string
- A filter to return only resources that match the given display name exactly.
- FineTune List<GetDetails Models Model Collection Item Fine Tune Detail> 
- Details about fine-tuning a custom model.
- Dictionary<string, string>
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- Id string
- The ID of the model.
- IsLong boolTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- LifecycleDetails string
- A message describing the current state of the model in more detail that can provide actionable information.
- ModelMetrics List<GetModels Model Collection Item Model Metric> 
- Model metrics during the creation of a new model.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Dictionary<string, string>
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- TimeCreated string
- The date and time that the model was created in the format of an RFC3339 datetime string.
- TimeDeprecated string
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- TimeUpdated string
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- Type string
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- Vendor string
- A filter to return only resources that match the entire vendor given.
- Version string
- The version of the model.
- BaseModel stringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- Capabilities []string
- Describes what this model can be used for.
- CompartmentId string
- The OCID of the compartment in which to list resources.
- map[string]string
- Description string
- An optional description of the model.
- DisplayName string
- A filter to return only resources that match the given display name exactly.
- FineTune []GetDetails Models Model Collection Item Fine Tune Detail 
- Details about fine-tuning a custom model.
- map[string]string
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- Id string
- The ID of the model.
- IsLong boolTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- LifecycleDetails string
- A message describing the current state of the model in more detail that can provide actionable information.
- ModelMetrics []GetModels Model Collection Item Model Metric 
- Model metrics during the creation of a new model.
- State string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- map[string]string
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- TimeCreated string
- The date and time that the model was created in the format of an RFC3339 datetime string.
- TimeDeprecated string
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- TimeUpdated string
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- Type string
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- Vendor string
- A filter to return only resources that match the entire vendor given.
- Version string
- The version of the model.
- baseModel StringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities List<String>
- Describes what this model can be used for.
- compartmentId String
- The OCID of the compartment in which to list resources.
- Map<String,String>
- description String
- An optional description of the model.
- displayName String
- A filter to return only resources that match the given display name exactly.
- fineTune List<GetDetails Models Model Collection Item Fine Tune Detail> 
- Details about fine-tuning a custom model.
- Map<String,String>
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id String
- The ID of the model.
- isLong BooleanTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycleDetails String
- A message describing the current state of the model in more detail that can provide actionable information.
- modelMetrics List<GetModels Model Collection Item Model Metric> 
- Model metrics during the creation of a new model.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Map<String,String>
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated String
- The date and time that the model was created in the format of an RFC3339 datetime string.
- timeDeprecated String
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- timeUpdated String
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type String
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor String
- A filter to return only resources that match the entire vendor given.
- version String
- The version of the model.
- baseModel stringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities string[]
- Describes what this model can be used for.
- compartmentId string
- The OCID of the compartment in which to list resources.
- {[key: string]: string}
- description string
- An optional description of the model.
- displayName string
- A filter to return only resources that match the given display name exactly.
- fineTune GetDetails Models Model Collection Item Fine Tune Detail[] 
- Details about fine-tuning a custom model.
- {[key: string]: string}
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id string
- The ID of the model.
- isLong booleanTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycleDetails string
- A message describing the current state of the model in more detail that can provide actionable information.
- modelMetrics GetModels Model Collection Item Model Metric[] 
- Model metrics during the creation of a new model.
- state string
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- {[key: string]: string}
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated string
- The date and time that the model was created in the format of an RFC3339 datetime string.
- timeDeprecated string
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- timeUpdated string
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type string
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor string
- A filter to return only resources that match the entire vendor given.
- version string
- The version of the model.
- base_model_ strid 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities Sequence[str]
- Describes what this model can be used for.
- compartment_id str
- The OCID of the compartment in which to list resources.
- Mapping[str, str]
- description str
- An optional description of the model.
- display_name str
- A filter to return only resources that match the given display name exactly.
- fine_tune_ Sequence[Getdetails Models Model Collection Item Fine Tune Detail] 
- Details about fine-tuning a custom model.
- Mapping[str, str]
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id str
- The ID of the model.
- is_long_ boolterm_ supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycle_details str
- A message describing the current state of the model in more detail that can provide actionable information.
- model_metrics Sequence[GetModels Model Collection Item Model Metric] 
- Model metrics during the creation of a new model.
- state str
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Mapping[str, str]
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- time_created str
- The date and time that the model was created in the format of an RFC3339 datetime string.
- time_deprecated str
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- time_updated str
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type str
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor str
- A filter to return only resources that match the entire vendor given.
- version str
- The version of the model.
- baseModel StringId 
- The OCID of the base model that's used for fine-tuning. For pretrained models, the value is null.
- capabilities List<String>
- Describes what this model can be used for.
- compartmentId String
- The OCID of the compartment in which to list resources.
- Map<String>
- description String
- An optional description of the model.
- displayName String
- A filter to return only resources that match the given display name exactly.
- fineTune List<Property Map>Details 
- Details about fine-tuning a custom model.
- Map<String>
- Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see Resource Tags. Example: {"Department": "Finance"}
- id String
- The ID of the model.
- isLong BooleanTerm Supported 
- Whether a model is supported long-term. Only applicable to base models.
- lifecycleDetails String
- A message describing the current state of the model in more detail that can provide actionable information.
- modelMetrics List<Property Map>
- Model metrics during the creation of a new model.
- state String
- A filter to return only resources their lifecycleState matches the given lifecycleState.
- Map<String>
- System tags for this resource. Each key is predefined and scoped to a namespace. Example: {"orcl-cloud.free-tier-retained": "true"}
- timeCreated String
- The date and time that the model was created in the format of an RFC3339 datetime string.
- timeDeprecated String
- Corresponds to the time when the custom model and its associated foundation model will be deprecated.
- timeUpdated String
- The date and time that the model was updated in the format of an RFC3339 datetime string.
- type String
- The model type indicating whether this is a pretrained/base model or a custom/fine-tuned model.
- vendor String
- A filter to return only resources that match the entire vendor given.
- version String
- The version of the model.
GetModelsModelCollectionItemFineTuneDetail       
- DedicatedAi stringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- TrainingConfigs List<GetModels Model Collection Item Fine Tune Detail Training Config> 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- TrainingDatasets List<GetModels Model Collection Item Fine Tune Detail Training Dataset> 
- The dataset used to fine-tune the model.
- DedicatedAi stringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- TrainingConfigs []GetModels Model Collection Item Fine Tune Detail Training Config 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- TrainingDatasets []GetModels Model Collection Item Fine Tune Detail Training Dataset 
- The dataset used to fine-tune the model.
- dedicatedAi StringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- trainingConfigs List<GetModels Model Collection Item Fine Tune Detail Training Config> 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- trainingDatasets List<GetModels Model Collection Item Fine Tune Detail Training Dataset> 
- The dataset used to fine-tune the model.
- dedicatedAi stringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- trainingConfigs GetModels Model Collection Item Fine Tune Detail Training Config[] 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- trainingDatasets GetModels Model Collection Item Fine Tune Detail Training Dataset[] 
- The dataset used to fine-tune the model.
- dedicated_ai_ strcluster_ id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- training_configs Sequence[GetModels Model Collection Item Fine Tune Detail Training Config] 
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- training_datasets Sequence[GetModels Model Collection Item Fine Tune Detail Training Dataset] 
- The dataset used to fine-tune the model.
- dedicatedAi StringCluster Id 
- The OCID of the dedicated AI cluster this fine-tuning runs on.
- trainingConfigs List<Property Map>
- The fine-tuning method and hyperparameters used for fine-tuning a custom model.
- trainingDatasets List<Property Map>
- The dataset used to fine-tune the model.
GetModelsModelCollectionItemFineTuneDetailTrainingConfig         
- EarlyStopping intPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- EarlyStopping doubleThreshold 
- How much the loss must improve to prevent early stopping.
- LearningRate double
- The initial learning rate to be used during training
- LogModel intMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- LoraAlpha int
- This parameter represents the scaling factor for the weight matrices in LoRA.
- LoraDropout double
- This parameter indicates the dropout probability for LoRA layers.
- LoraR int
- This parameter represents the LoRA rank of the update matrices.
- NumOf intLast Layers 
- The number of last layers to be fine-tuned.
- TotalTraining intEpochs 
- The maximum number of training epochs to run for.
- TrainingBatch intSize 
- The batch size used during training.
- TrainingConfig stringType 
- The fine-tuning method for training a custom model.
- EarlyStopping intPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- EarlyStopping float64Threshold 
- How much the loss must improve to prevent early stopping.
- LearningRate float64
- The initial learning rate to be used during training
- LogModel intMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- LoraAlpha int
- This parameter represents the scaling factor for the weight matrices in LoRA.
- LoraDropout float64
- This parameter indicates the dropout probability for LoRA layers.
- LoraR int
- This parameter represents the LoRA rank of the update matrices.
- NumOf intLast Layers 
- The number of last layers to be fine-tuned.
- TotalTraining intEpochs 
- The maximum number of training epochs to run for.
- TrainingBatch intSize 
- The batch size used during training.
- TrainingConfig stringType 
- The fine-tuning method for training a custom model.
- earlyStopping IntegerPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- earlyStopping DoubleThreshold 
- How much the loss must improve to prevent early stopping.
- learningRate Double
- The initial learning rate to be used during training
- logModel IntegerMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- loraAlpha Integer
- This parameter represents the scaling factor for the weight matrices in LoRA.
- loraDropout Double
- This parameter indicates the dropout probability for LoRA layers.
- loraR Integer
- This parameter represents the LoRA rank of the update matrices.
- numOf IntegerLast Layers 
- The number of last layers to be fine-tuned.
- totalTraining IntegerEpochs 
- The maximum number of training epochs to run for.
- trainingBatch IntegerSize 
- The batch size used during training.
- trainingConfig StringType 
- The fine-tuning method for training a custom model.
- earlyStopping numberPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- earlyStopping numberThreshold 
- How much the loss must improve to prevent early stopping.
- learningRate number
- The initial learning rate to be used during training
- logModel numberMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- loraAlpha number
- This parameter represents the scaling factor for the weight matrices in LoRA.
- loraDropout number
- This parameter indicates the dropout probability for LoRA layers.
- loraR number
- This parameter represents the LoRA rank of the update matrices.
- numOf numberLast Layers 
- The number of last layers to be fine-tuned.
- totalTraining numberEpochs 
- The maximum number of training epochs to run for.
- trainingBatch numberSize 
- The batch size used during training.
- trainingConfig stringType 
- The fine-tuning method for training a custom model.
- early_stopping_ intpatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- early_stopping_ floatthreshold 
- How much the loss must improve to prevent early stopping.
- learning_rate float
- The initial learning rate to be used during training
- log_model_ intmetrics_ interval_ in_ steps 
- Determines how frequently to log model metrics.
- lora_alpha int
- This parameter represents the scaling factor for the weight matrices in LoRA.
- lora_dropout float
- This parameter indicates the dropout probability for LoRA layers.
- lora_r int
- This parameter represents the LoRA rank of the update matrices.
- num_of_ intlast_ layers 
- The number of last layers to be fine-tuned.
- total_training_ intepochs 
- The maximum number of training epochs to run for.
- training_batch_ intsize 
- The batch size used during training.
- training_config_ strtype 
- The fine-tuning method for training a custom model.
- earlyStopping NumberPatience 
- Stop training if the loss metric does not improve beyond 'early_stopping_threshold' for this many times of evaluation.
- earlyStopping NumberThreshold 
- How much the loss must improve to prevent early stopping.
- learningRate Number
- The initial learning rate to be used during training
- logModel NumberMetrics Interval In Steps 
- Determines how frequently to log model metrics.
- loraAlpha Number
- This parameter represents the scaling factor for the weight matrices in LoRA.
- loraDropout Number
- This parameter indicates the dropout probability for LoRA layers.
- loraR Number
- This parameter represents the LoRA rank of the update matrices.
- numOf NumberLast Layers 
- The number of last layers to be fine-tuned.
- totalTraining NumberEpochs 
- The maximum number of training epochs to run for.
- trainingBatch NumberSize 
- The batch size used during training.
- trainingConfig StringType 
- The fine-tuning method for training a custom model.
GetModelsModelCollectionItemFineTuneDetailTrainingDataset         
- Bucket string
- The Object Storage bucket name.
- DatasetType string
- The type of the data asset.
- Namespace string
- The Object Storage namespace.
- Object string
- The Object Storage object name.
- Bucket string
- The Object Storage bucket name.
- DatasetType string
- The type of the data asset.
- Namespace string
- The Object Storage namespace.
- Object string
- The Object Storage object name.
- bucket String
- The Object Storage bucket name.
- datasetType String
- The type of the data asset.
- namespace String
- The Object Storage namespace.
- object String
- The Object Storage object name.
- bucket string
- The Object Storage bucket name.
- datasetType string
- The type of the data asset.
- namespace string
- The Object Storage namespace.
- object string
- The Object Storage object name.
- bucket str
- The Object Storage bucket name.
- dataset_type str
- The type of the data asset.
- namespace str
- The Object Storage namespace.
- object str
- The Object Storage object name.
- bucket String
- The Object Storage bucket name.
- datasetType String
- The type of the data asset.
- namespace String
- The Object Storage namespace.
- object String
- The Object Storage object name.
GetModelsModelCollectionItemModelMetric      
- FinalAccuracy double
- Fine-tuned model accuracy.
- FinalLoss double
- Fine-tuned model loss.
- ModelMetrics stringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- FinalAccuracy float64
- Fine-tuned model accuracy.
- FinalLoss float64
- Fine-tuned model loss.
- ModelMetrics stringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- finalAccuracy Double
- Fine-tuned model accuracy.
- finalLoss Double
- Fine-tuned model loss.
- modelMetrics StringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- finalAccuracy number
- Fine-tuned model accuracy.
- finalLoss number
- Fine-tuned model loss.
- modelMetrics stringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- final_accuracy float
- Fine-tuned model accuracy.
- final_loss float
- Fine-tuned model loss.
- model_metrics_ strtype 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
- finalAccuracy Number
- Fine-tuned model accuracy.
- finalLoss Number
- Fine-tuned model loss.
- modelMetrics StringType 
- The type of the model metrics. Each type of model can expect a different set of model metrics.
Package Details
- Repository
- oci pulumi/pulumi-oci
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the ociTerraform Provider.